Fengbo Sun, Rui Zhang, Fanchao Meng, Shuai Wang, Lujun Huang,  and Lin Geng, Interconnected microstructure and flexural behavior of Ti2C–Ti composites with superior Young’s modulus, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2088-2101. https://doi.org/10.1007/s12613-024-2848-1
Cite this article as:
Fengbo Sun, Rui Zhang, Fanchao Meng, Shuai Wang, Lujun Huang,  and Lin Geng, Interconnected microstructure and flexural behavior of Ti2C–Ti composites with superior Young’s modulus, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2088-2101. https://doi.org/10.1007/s12613-024-2848-1
Research Article

Interconnected microstructure and flexural behavior of Ti2C–Ti composites with superior Young’s modulus

+ Author Affiliations
  • Corresponding author:

    Lujun Huang    E-mail: huanglujun@hit.edu.cn

  • Received: 8 November 2023Revised: 2 January 2024Accepted: 17 January 2024Available online: 6 February 2024
  • To enhance the Young’s modulus (E) and strength of titanium alloys, we designed titanium matrix composites with interconnected microstructure based on the Hashin–Shtrikman theory. According to the results, the in-situ reaction yielded an interconnected microstructure composed of Ti2C particles when the Ti2C content reached 50vol%. With widths of 10 and 230 nm, the intraparticle Ti lamellae in the prepared composite exhibited a bimodal size distribution due to precipitation and the unreacted Ti phase within the grown Ti2C particles. The composites with interconnected microstructure attained superior properties, including E of 174.3 GPa and ultimate flexural strength of 1014 GPa. Compared with that of pure Ti, the E of the composite was increased by 55% due to the high Ti2C content and interconnected microstructure. The outstanding strength resulted from the strong interfacial bonding, load-bearing capacity of interconnected Ti2C particles, and bimodal intraparticle Ti lamellae, which minimized the average crack driving force. Interrupted flexural tests revealed preferential crack initiation along the {001} cleavage plane and grain boundary of Ti2C in the region with the highest tensile stress. In addition, the propagation can be efficiently inhibited by interparticle Ti grains, which prevented the brittle fracture of the composites.
  • loading
  • [1]
    F. Bonnet, V. Daeschler, and G. Petitgand, High modulus steels: New requirement of automotive market. How to take up challenge?, Can. Metall. Q., 53(2014), No. 3, p. 243. doi: 10.1179/1879139514Y.0000000144
    [2]
    Z.Y. Huang, X.X. Zhang, B.Y. Xiao, and Z.Y. Ma, Hot deformation mechanisms and microstructure evolution of SiCp/2014Al composite, J. Alloys Compd., 722(2017), p. 145. doi: 10.1016/j.jallcom.2017.06.065
    [3]
    X.H. Wang, H.H. Leng, B. Han, X. Wang, B. Hu, and H.W. Luo, Solidified microstructures and elastic modulus of hypo-eutectic and hyper-eutectic TiB2-reinforced high-modulus steel, Acta Mater., 176(2019), p. 84. doi: 10.1016/j.actamat.2019.06.052
    [4]
    H. Springer, R.A. Fernandez, M.J. Duarte, A. Kostka, and D. Raabe, Microstructure refinement for high modulus in situ metal matrix composite steels via controlled solidification of the system Fe–TiB2, Acta Mater., 96(2015), p. 47. doi: 10.1016/j.actamat.2015.06.017
    [5]
    M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2008.
    [6]
    J.D. Zhang, X.X. Zhang, M.F. Qian, Z.G. Jia, M. Imran, and L. Geng, Recent progress in particulate reinforced aluminum composites fabricated via spark plasma sintering: Microstructure and properties, Crit. Rev. Solid State Mater. Sci., (2023), p. 1.
    [7]
    W.T. Chen, W.B. Yu, P.C. Zhang, et al., Fabrication and performance of 3D co-continuous magnesium composites reinforced with Ti2AlN x MAX phase, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1406. doi: 10.1007/s12613-022-2427-2
    [8]
    Y. Bao, L.J. Huang, Q. An, et al., Insights into arc-assisted self-propagating high temperature synthesis of TiB2–TiC ceramic coating via wire-arc deposition, J. Eur. Ceram. Soc., 40(2020), No. 13, p. 4381. doi: 10.1016/j.jeurceramsoc.2020.05.005
    [9]
    H. Mirzadeh, Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1278. doi: 10.1007/s12613-022-2589-y
    [10]
    W.Q. Hu, F.M. Gong, S.C. Liu, et al., Microstructure refinement and second phase particle regulation of Mo−Y2O3 alloys by minor TiC additive, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 2012. doi: 10.1007/s12613-022-2462-z
    [11]
    L. Huang, Q. An, L. Geng, et al., Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites, Adv. Mater., 33(2021), No. 6, art. No. 2000688. doi: 10.1002/adma.202000688
    [12]
    L.J. Huang, L. Geng, H.X. Peng, and J. Zhang, Room temperature tensile fracture characteristics of in situ TiBw/Ti6Al4V composites with a quasi-continuous network architecture, Scripta Mater., 64(2011), No. 9, p. 844. doi: 10.1016/j.scriptamat.2011.01.011
    [13]
    F.M. Zhang, S.L. Liu, P.P. Zhao, T.F. Liu, and J. Sun, Titanium/nanodiamond nanocomposites: Effect of nanodiamond on microstructure and mechanical properties of titanium, Mater. Des., 131(2017), p. 144. doi: 10.1016/j.matdes.2017.06.015
    [14]
    J.H. Wang, X.L. Guo, J.N. Qin, D. Zhang, and W.J. Lu, Microstructure and mechanical properties of investment casted titanium matrix composites with B4C additions, Mater. Sci. Eng. A, 628(2015), p. 366. doi: 10.1016/j.msea.2015.01.067
    [15]
    S. Wang, L.J. Huang, S. Jiang, et al., Microstructure evolution and improved properties of laminated titanium matrix composites with gradient equiaxed grains, Sci. China Technol. Sci., 63(2020), No. 12, p. 2687. doi: 10.1007/s11431-020-1619-7
    [16]
    Y.Y. Wu, Y. Wen, A.N. Guo, et al., Grain boundary and texture evolution of TiB/Ti–2Al–6Sn titanium matrix composite under electroshocking treatment, J. Mater. Res. Technol., 27(2023), p. 4305.
    [17]
    B.X. Liu, L.J. Huang, L. Geng, B. Wang, and X.P. Cui, Effects of reinforcement volume fraction on tensile behaviors of laminated Ti–TiBw/Ti composites, Mater. Sci. Eng. A, 610(2014), p. 344.
    [18]
    M.A. Lagos, I. Agote, G. Atxaga, O. Adarraga, and L. Pambaguian, Fabrication and characterisation of titanium matrix composites obtained using a combination of self propagating high temperature synthesis and spark plasma sintering, Mater. Sci. Eng. A, 655(2016), p. 44. doi: 10.1016/j.msea.2015.12.050
    [19]
    H. Singh, M. Hayat, Z. He, V.K. Peterson, R. Das, and P. Cao, In situ neutron diffraction observations of Ti–TiB composites, Composites Part A, 124(2019), art. No. 105501. doi: 10.1016/j.compositesa.2019.105501
    [20]
    D.R. Ni, L. Geng, J. Zhang, and Z.Z. Zheng, Effect of B4C particle size on microstructure of in situ titanium matrix composites prepared by reactive processing of Ti–B4C system, Scripta Mater., 55(2006), No. 5, p. 429. doi: 10.1016/j.scriptamat.2006.05.024
    [21]
    H.B. Feng, Y. Zhou, D.C. Jia, and Q.C. Meng, Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering, Compos. Sci. Technol., 64(2004), No. 16, p. 2495. doi: 10.1016/j.compscitech.2004.05.013
    [22]
    Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, 11(1963), No. 2, p. 127. doi: 10.1016/0022-5096(63)90060-7
    [23]
    F.B. Sun, S. Wang, X. Chen, et al., Improving flexural strength of Ti2C–Ti cermet by hot compressive deformation: Microstructure evolution and fracture behaviors, Sci. China Technol. Sci., 66(2023), No. 11, p. 3298. doi: 10.1007/s11431-022-2339-4
    [24]
    A.I. Gusev, Phase equilibria, phases and compounds in the Ti–C system, Russ. Chem. Rev., 71(2002), No. 6, p. 439. doi: 10.1070/RC2002v071n06ABEH000721
    [25]
    P. Wanjara, R.A.L. Drew, J. Root, and S. Yue, Evidence for stable stoichiometric Ti2C at the interface in TiC particulate reinforced Ti alloy composites, Acta Mater., 48(2000), No. 7, p. 1443. doi: 10.1016/S1359-6454(99)00453-X
    [26]
    T.P. Johnson, J.W. Brooks, and M.H. Loretto, Mechanical properties of a Ti-based metal matrix composite produced by a casting route, Scr. Metall. Mater., 25(1991), No. 4, p. 785. doi: 10.1016/0956-716X(91)90225-P
    [27]
    M. Radhakrishnan, M. Hassan, B. Long, D. Otazu, T. Lienert, and O. Anderoglu, Microstructures and properties of Ti/TiC composites fabricated by laser-directed energy deposition, Addit. Manuf., 46(2021), art. No. 102198.
    [28]
    J.D. Wang, Y.Z. Zeng, X.P. Qi, et al., Graded microstructure and properties of TiCp/Ti6Al4V composites manufactured by laser melting deposition, Ceram. Int., 48(2022), No. 5, p. 6985. doi: 10.1016/j.ceramint.2021.11.256
    [29]
    Z.J. Wei, L. Cao, H.W. Wang, and C.M. Zou, Microstructure and mechanical properties of TiC/Ti–6Al–4V composites processed by in situ casting route, Mater. Sci. Technol., 27(2011), No. 8, p. 1321. doi: 10.1179/026708310X12699498462922
    [30]
    S. Zhao, Y.J. Xu, C.L. Pan, L.H. Liang, and X.G. Wang, Microstructural modeling and strengthening mechanism of TiB/Ti–6Al–4V discontinuously-reinforced titanium matrix composite, Materials, 12(2019), No. 5, art. No. E827. doi: 10.3390/ma12050827
    [31]
    L.J. Huang, L. Geng, and H.X. Peng, Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal?, Prog. Mater. Sci., 71(2015), p. 93. doi: 10.1016/j.pmatsci.2015.01.002
    [32]
    K. Vasanthakumar and S.R. Bakshi, Effect of C/Ti ratio on densification, microstructure and mechanical properties of TiC x prepared by reactive spark plasma sintering, Ceram. Int., 44(2018), No. 1, p. 484. doi: 10.1016/j.ceramint.2017.09.202
    [33]
    S.F. Li, B. Sun, H. Imai, and K. Kondoh, Powder metallurgy Ti–TiC metal matrix composites prepared by in situ reactive processing of Ti–VGCFs system, Carbon, 61(2013), p. 216. doi: 10.1016/j.carbon.2013.04.088
    [34]
    L.C. Xie, Q. Feng, Y. Wen, L.Q. Wang, C.H. Jiang, and W.J. Lu, Surface microstructure characterization on shot peened (TiB + TiC)/Ti–6Al–4V by Rietveld whole pattern fitting method, J. Mater. Res., 31(2016), No. 15, p. 2291. doi: 10.1557/jmr.2016.256
    [35]
    R.A. Young and D.B. Wiles, Profile shape functions in Rietveld refinements, J. Appl. Crystallogr., 15(1982), No. 4, p. 430. doi: 10.1107/S002188988201231X
    [36]
    L.J. Huang, S. Wang, L. Geng, B. Kaveendran, and H.X. Peng, Low volume fraction in situ (Ti5Si3 + Ti2C)/Ti hybrid composites with network microstructure fabricated by reaction hot pressing of Ti–SiC system, Compos. Sci. Technol., 82(2013), p. 23. doi: 10.1016/j.compscitech.2013.03.025
    [37]
    F.B. Sun, L.J. Huang, R. Zhang, et al. , In-situ synthesis and superhigh modulus of network structured TiC/Ti composites based on diamond-Ti system, J. Alloys Compd., 834(2020), art. No. 155248. doi: 10.1016/j.jallcom.2020.155248
    [38]
    B.L. Bramfitt, The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron, Metall. Trans., 1(1970), No. 7, p. 1987. doi: 10.1007/BF02642799
    [39]
    T.T.T. Trang, S.Y. Lee, Y.U. Heo, et al., Improved hot ductility of an as-cast high Mn TWIP steel by direct implementation of an MnS-containing master alloy, Scripta Mater., 215(2022), art. No. 114685. doi: 10.1016/j.scriptamat.2022.114685
    [40]
    T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, 1993.
    [41]
    D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, 2021.
    [42]
    X.Y. Wang, S.P. Li, Y.F. Han, G.F. Huang, J.W. Mao, and W.J. Lu, Visual assessment of special rod-like α-Ti precipitates within the in situ TiC crystals and the mechanical responses of titanium matrix composites, Composites Part B, 230(2022), art. No. 109511. doi: 10.1016/j.compositesb.2021.109511
    [43]
    M. Kato, T. Fujii, and S. Onaka, Elastic strain energies of sphere, plate and needle inclusions, Mater. Sci. Eng. A, 211(1996), No. 1-2, p. 95. doi: 10.1016/0921-5093(95)10091-1
    [44]
    M. Guemmaz, A. Mosser, R. Ahujab, and B. Johansson, Elastic properties of sub-stoichiometric titanium carbides, Solid State Commun., 110(1999), No. 6, p. 299. doi: 10.1016/S0038-1098(99)00091-5
    [45]
    A. Jain, S.P. Ong, G. Hautier, et al., Commentary: The materials project: A materials genome approach to accelerating materials innovation, APL Mater., 1(2013), No. 1, art. No. 011002. doi: 10.1063/1.4812323
    [46]
    L.X. Cheng, Z.P. Xie, G.W. Liu, W. Liu, and W.J. Xue, Densification and mechanical properties of TiC by SPS-effects of holding time, sintering temperature and pressure condition, J. Eur. Ceram. Soc., 32(2012), No. 12, p. 3399. doi: 10.1016/j.jeurceramsoc.2012.04.017
    [47]
    W.C. Oliver and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res., 19(2004), No. 1, p. 3. doi: 10.1557/jmr.2004.19.1.3
    [48]
    Q. An, L.J. Huang, Q. Qian, et al., Insights into in situ TiB/dual-phase Ti alloy interface and its high load-bearing capacity, J. Mater. Sci. Technol., 119(2022), p. 156. doi: 10.1016/j.jmst.2021.12.035
    [49]
    J.B. Ferguson, X. Thao, P.K. Rohatgi, K. Cho, and C.S. Kim, Computational and analytical prediction of the elastic modulus and yield stress in particulate-reinforced metal matrix composites, Scripta Mater., 83(2014), p. 45. doi: 10.1016/j.scriptamat.2014.04.004
    [50]
    A. Shaga, P. Shen, L.G. Xiao, R.F. Guo, Y.B. Liu, and Q.C. Jiang, High damage-tolerance bio-inspired ZL205A/SiC composites with a lamellar-interpenetrated structure, Mater. Sci. Eng. A, 708(2017), p. 199. doi: 10.1016/j.msea.2017.09.114
    [51]
    M. Yi, X.Z. Zhang, G.W. Liu, B. Wang, H.C. Shao, and G.J. Qiao, Comparative investigation on microstructures and mechanical properties of (TiB + TiC)/Ti–6Al–4V composites from Ti–B4C–C and Ti–TiB2–TiC systems, Mater. Charact., 140(2018), p. 281. doi: 10.1016/j.matchar.2018.04.010
    [52]
    B.V. Radhakrishna Bhat, J. Subramanyam, and V.V. Bhanu Prasad, Preparation of Ti–TiB–TiC & Ti–TiB composites by in situ reaction hot pressing, Mater. Sci. Eng. A, 325(2002), No. 1-2, p. 126. doi: 10.1016/S0921-5093(01)01412-5
    [53]
    H. Singh, M. Hayat, H.Z. Zhang, R. Das, and P. Cao, Effect of TiB2 content on microstructure and properties of in situ Ti–TiB composites, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 915. doi: 10.1007/s12613-019-1797-6
    [54]
    M.G. Elkhateeb and Y.C. Shin, Molecular dynamics-based cohesive zone representation of Ti6Al4V/TiC composite interface, Mater. Des., 155(2018), p. 161. doi: 10.1016/j.matdes.2018.05.054
    [55]
    T. Liang, M. Ashton, K. Choudhary, et al., Properties of Ti/TiC interfaces from molecular dynamics simulations, J. Phys. Chem. C, 120(2016), No. 23, p. 12530. doi: 10.1021/acs.jpcc.6b02763
    [56]
    K. Matsunaga, T. Sasaki, N. Shibata, T. Mizoguchi, T. Yamamoto, and Y. Ikuhara, Bonding nature of metal/oxide incoherent interfaces by first-principles calculations, Phys. Rev. B, 74(2006), No. 12, art. No. 125423. doi: 10.1103/PhysRevB.74.125423
    [57]
    D. Matsunaka and Y. Shibutani, Electronic states and adhesion properties at metal/MgO incoherent interfaces: First-principles calculations, Phys. Rev. B, 77(2008), No. 16, art. No. 165435. doi: 10.1103/PhysRevB.77.165435
    [58]
    D. Hu, T.P. Johnson, and M.H. Loretto, Titanium precipitation in substoichiometric TiC particles, Scr. Metall. Mater., 30(1994), No. 8, p. 1015. doi: 10.1016/0956-716X(94)90547-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(442) PDF Downloads(7) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return