Cite this article as: |
Junyi Xiang, Xi Lu, Luwei Bai, Hongru Rao, Sheng Liu, Qingyun Huang, Shengqin Zhang, Guishang Pei, and Xuewei Lü, Oxidation behavior of FeV2O4 and FeCr2O4 particles in the air: Nonisothermal kinetic and reaction mechanism, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1839-1848. https://doi.org/10.1007/s12613-024-2851-6 |
Junyi Xiang E-mail: xiangjunyi126@126.com
Guishang Pei E-mail: peiguishang@snu.ac.kr
[1] |
V. Tsurkan, H.A.K. von Nidda, J. Deisenhofer, P. Lunkenheimer, and A. Loidl, On the complexity of spinels: Magnetic, electronic, and polar ground states, Phys. Rep., 926(2021), p. 1. doi: 10.1016/j.physrep.2021.04.002
|
[2] |
A. Sundaresan and N. Ter-Oganessian, Magnetoelectric and multiferroic properties of spinels, J. Appl. Phys., 129(2021), art. No. 060901. doi: 10.1063/5.0035825
|
[3] |
L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core–shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504. doi: 10.1007/s12613-022-2509-1
|
[4] |
N. Nishiguchi and M. Onoda, A pseudotetramer in the geometrically frustrated spinel system CdV2O4, J. Phys.: Condens. Matter, 14(2002), No. 28, p. L551. doi: 10.1088/0953-8984/14/28/105
|
[5] |
R. Batulin, M. Cherosov, A. Kiiamov, et al., Synthesis and single crystal growth by floating zone technique of FeCr2O4 multiferroic spinel: Its structure, composition, and magnetic properties, Magnetochemistry, 8(2022), No. 8, p. 86. doi: 10.3390/magnetochemistry8080086
|
[6] |
G.S. Pei, C. Pan, D.P. Zhong, J.Y. Xiang, and X.W. Lv, Crystal structure, phase transitions, and thermodynamic properties of magnesium metavanadate (MgV2O6), J. Magnesium Alloys, 12(2024), No. 4, p. 1449. doi: 10.1016/j.jma.2022.05.011
|
[7] |
S. Nishihara, W. Doi, H. Ishibashi, Y. Hosokoshi, X.M. Ren, and S. Mori, Appearance of magnetization jumps in magnetic hysteresis curves in spinel oxide FeV2O4, J. Appl. Phys., 107(2010), No. 9, art. No. 09A504.
|
[8] |
L. Yang, Y.R. Zhang, C.P. Wu, et al., A novel high-selectivity mixed potential ammonia gas sensor based on FeCr2O4 sensing electrode, J. Electroanal. Chem., 924(2022), art. No. 116849. doi: 10.1016/j.jelechem.2022.116849
|
[9] |
H.F. Shang and D.G. Xia, Spinel LiMn2O4 integrated with coating and doping by Sn self-segregation, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 909. doi: 10.1007/s12613-022-2482-8
|
[10] |
B. Shi, H.S. Liang, Z.J. Xie, Q. Chang, and H.J. Wu, Dielectric loss enhancement induced by the microstructure of CoFe2O4 foam to realize broadband electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1388. doi: 10.1007/s12613-023-2599-4
|
[11] |
G. Ghanashyam and H.K. Jeong, Synthesis of nitrogen-doped plasma treated carbon nanofiber as an efficient electrode for symmetric supercapacitor, J. Energy Storage, 33(2021), art. No. 102150. doi: 10.1016/j.est.2020.102150
|
[12] |
H. Zhang, G.F. Qian, T.Q. Yu, J.L. Chen, L. Luo, and S.B. Yin, Interface Engineering of Ni3Fe and FeV2O4 coupling with carbon-coated mesoporous nanosheets for boosting overall water splitting at 1500 mA·cm–2, ACS Sustainable Chem. Eng., 9(2021), No. 24, p. 8249. doi: 10.1021/acssuschemeng.1c02293
|
[13] |
I.V.B. Maggay, L.M.Z. De Juan, J.S. Lu, et al., Electrochemical properties of novel FeV2O4 as an anode for Na-ion batteries, Sci. Rep., 8(2018), art. No. 8839. doi: 10.1038/s41598-018-27083-z
|
[14] |
T.R. Kuo, W.T. Chen, H.J. Liao, et al., Improving hydrogen evolution activity of earth-abundant cobalt-doped iron pyrite catalysts by surface modification with phosphide, Small, 13(2017), No. 8, art. No. 1603356. doi: 10.1002/smll.201603356
|
[15] |
S. Yougbare, T.K. Chang, S.H. Tan, et al., Antimicrobial gold nanoclusters: Recent developments and future perspectives, Int. J. Mol. Sci., 20(2019), No. 12, art. No. E2924. doi: 10.3390/ijms20122924
|
[16] |
S. Yougbaré, H.L. Chou, C.H. Yang, et al., Facet-dependent gold nanocrystals for effective photothermal killing of bacteria, J. Hazard. Mater., 407(2021), art. No. 124617. doi: 10.1016/j.jhazmat.2020.124617
|
[17] |
B. Janani, S. Swetha, A. Syed, et al., Spinel FeV2O4 coupling on nanocube-like Bi2O3 for high performance white light photocatalysis and antibacterial applications, J. Alloys Compd., 887(2021), art. No. 161432. doi: 10.1016/j.jallcom.2021.161432
|
[18] |
A. Chinnathambi, Synthesis and characterization of spinel FeV2O4 coupled ZnO nanoplates for boosted white light photocatalysis and antibacterial applications, J. Alloys Compd., 890(2022), art. No. 161742. doi: 10.1016/j.jallcom.2021.161742
|
[19] |
A. Abbasi, A.H. Keihan, M.A. Golsefidi, M. Rahimi-Nasrabadi, and H. Khojasteh, Synthesis, characterization and photocatalytic activity of FeCr2O4 and FeCr2O4/Ag nanocomposites, J. Nanostruct., 10(2020), No. 3, p. 518.
|
[20] |
A.V. Borhade, D.R. Tope, J.A. Agashe, and S.S. Kushare, Synthesis, characterization and photocatalytic study of FeCr2O4@ZnO@MgO core–shell nanoparticle, J. Water Environ. Nanotechnol., 6(2021), No. 2, p. 164.
|
[21] |
C.P.J. Van Vuuren and P.P. Stander, The oxidation of FeV2O4 by oxygen in a sodium carbonate mixture, Miner. Eng., 14(2001), No. 7, p. 803. doi: 10.1016/S0892-6875(01)00076-0
|
[22] |
A. Wold, D.B. Rogers, R. Arnott, and N. Menyuk, Vanadium iron oxides, J. Appl. Phys., 33(1962), p. 1208. doi: 10.1063/1.1728662
|
[23] |
F. Paborji, M.S. Afarani, A.M. Arabi, and M. Ghahari, Solution combustion synthesis of FeCr2O4 powders for pigment applications: Effect of fuel type, Int. J. Appl. Ceram. Technol., 19(2022), No. 5, p. 2406.
|
[24] |
Y. Hidaka, T. Anraku, and N. Otsuka, Deformation and fracture behavior of surface oxide scale on Fe–13Cr alloy in hot-rolling process, Mater. Sci. Forum, 522-523(2006), p. 461. doi: 10.4028/www.scientific.net/MSF.522-523.461
|
[25] |
X. Zhang, B. Xie, J. Diao, and X.J. Li, Nucleation and growth kinetics of spinel crystals in vanadium slag, Ironmaking Steelmaking, 39(2012), No. 2, p. 147. doi: 10.1179/1743281211Y.0000000079
|
[26] |
H.G. Wang, M.Y. Wang, and X.W. Wang, Leaching behaviour of chromium during vanadium extraction from vanadium slag, Miner. Process. Extr. Metall., 124(2015), No. 3, p. 127. doi: 10.1179/1743285514Y.0000000085
|
[27] |
H.Y. Li, H.X. Fang, K. Wang, et al., Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching, Hydrometallurgy, 156(2015), p. 124. doi: 10.1016/j.hydromet.2015.06.003
|
[28] |
S. Nakamura and A. Fuwa, Distinct evidence of orbital order in spinel oxide FeV2O4 by 57Fe mössbauer spectroscopy, J. Phys. Soc. Jpn., 85(2016), No. 1, art. No. 014702. doi: 10.7566/JPSJ.85.014702
|
[29] |
S. Nakamura, K. Tasaki, and T. Katsufuji, Competitive local structure in mixed vanadium spinel Fe1−xMnxV2O4, [in] Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019 ), Okayama, 2019.
|
[30] |
G. Cohn, Reactions in the solid state, Chem. Rev., 42(1948), No. 3, p. 527. doi: 10.1021/cr60133a002
|
[31] |
H.E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis, J. Res. Natl. Bur. Stand., 57(1956), No. 4, art. No. 217. doi: 10.6028/jres.057.026
|
[32] |
T. Ozawa, Estimation of activation energy by isoconversion methods, Thermochim. Acta, 203(1992), p. 159. doi: 10.1016/0040-6031(92)85192-X
|
[33] |
M.A. Arshad, A. Maaroufi, R. Benavente, J.M. Pereña, and G. Pinto, Thermal degradation kinetics of insulating/conducting epoxy/Zn composites under nonisothermal conditions, Polym. Compos., 34(2013), No. 12, p. 2049. doi: 10.1002/pc.22613
|
[34] |
J. Málek, The kinetic analysis of non-isothermal data, Thermochim. Acta, 200(1992), p. 257. doi: 10.1016/0040-6031(92)85118-F
|
[35] |
A.W. Coats and J.P. Redfern, Kinetic parameters from thermogravimetric data, Nature, 201(1964), p. 68. doi: 10.1038/201068a0
|
[36] |
T. Shyrokykh, X.W. Wei, S. Seetharaman, and O. Volkova, Vaporization of vanadium pentoxide from CaO–SiO2–VO x slags during alumina dissolution, Metall. Mater. Trans. B, 52(2021), No. 3, p. 1472. doi: 10.1007/s11663-021-02114-9
|
[37] |
Y. Yang, L.D. Teng, and S. Seetharaman, Kinetic studies on evaporation of liquid vanadium oxide, VO x (where x = 4 or 5), Metall. Mater. Trans. B, 43(2012), No. 6, p. 1684. doi: 10.1007/s11663-012-9742-3
|
[38] |
D.T. Cestarolli and E.M. Guerra, Vanadium pentoxide (V2O5): Their obtaining methods and wide applications, [in] Transition Metal Compounds–-Synthesis , Properties , and Application, IntechOpen, Vienna, 2021.
|
[39] |
W.X. Wang, Z.L. Xue, S.Q. Song, et al., Research on high-temperature volatilization characteristics of V2O5 during direct alloying of smelting vanadium steel, Adv. Mater. Res., 557-559(2012), p. 182. doi: 10.4028/www.scientific.net/AMR.557-559.182
|
[40] |
P.P. Stander and C.P.J. Van Vuuren, The high temperature oxidation of FeV2O4, Thermochim. Acta, 157(1990), No. 2, p. 347. doi: 10.1016/0040-6031(90)80036-X
|
[41] |
J. Wen, T. Jiang, Y.Z. Xu, J.Y. Liu, and X.X. Xue, Efficient separation and extraction of vanadium and chromium in high chromium vanadium slag by selective two-stage roasting–leaching, Metall. Mater. Trans. B, 49(2018), No. 3, p. 1471. doi: 10.1007/s11663-018-1197-8
|
[42] |
H.Y. Li, J. Cheng, C.J. Wang, S. Shen, J. Diao, and B. Xie, Ecofriendly selective extraction of vanadium from vanadium slag with high chromium content via magnesiation roasting–acid leaching, Metall. Mater. Trans. B, 53(2022), No. 1, p. 604. doi: 10.1007/s11663-021-02402-4
|
[43] |
J.Y. Xiang, X. Wang, G.S. Pei, Q.Y. Huang, and X.W. Lü, Recovery of vanadium from vanadium slag by composite roasting with CaO/MgO and leaching, Trans. Nonferrous Met. Soc. China, 30(2020), No. 11, p. 3114. doi: 10.1016/S1003-6326(20)65447-4
|