Mohammad Javad Sohrabi, Hamed Mirzadeh, Saeed Sadeghpour, Abdol Reza Geranmayeh,  and Reza Mahmudi, Temperature-jump tensile tests to induce optimized TRIP/TWIP effect in a metastable austenitic stainless steel, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2025-2036. https://doi.org/10.1007/s12613-024-2852-5
Cite this article as:
Mohammad Javad Sohrabi, Hamed Mirzadeh, Saeed Sadeghpour, Abdol Reza Geranmayeh,  and Reza Mahmudi, Temperature-jump tensile tests to induce optimized TRIP/TWIP effect in a metastable austenitic stainless steel, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2025-2036. https://doi.org/10.1007/s12613-024-2852-5
Research Article

Temperature-jump tensile tests to induce optimized TRIP/TWIP effect in a metastable austenitic stainless steel

+ Author Affiliations
  • Corresponding author:

    Hamed Mirzadeh    E-mail: hmirzadeh@ut.ac.ir

  • Received: 20 September 2023Revised: 24 December 2023Accepted: 14 February 2024Available online: 19 February 2024
  • In the present work, plastic deformation mechanisms were initially tailored by adjusting the deformation temperature in the range of 0 to 200°C in AISI 304L austenitic stainless steel, aiming to optimize the strength-ductility synergy. It was shown that the combined twinning-induced plasticity (TWIP)/transformation-induced plasticity (TRIP) effects and a wider strain range for the TRIP effect up to higher strains by adjusting the deformation temperature are good strategies to improve the strength-ductility synergy of this metastable stainless steel. In this regard, by consideration of the observed temperature-dependency of plastic deformation, the controlled sequence of TWIP and TRIP effects for archiving superior strength-ductility trade-off was intended by the pre-designed temperature jump tensile tests. Accordingly, the optimum tensile toughness of 846 MJ/m3 and total elongation to 133% were obtained by this strategy via exploiting the advantages of the TWIP effect at 100°C and the TRIP effect at 25°C at the later stages of the straining. Consequently, a deformation-temperature-transformation (DTT) diagram was developed for this metastable alloy. Moreover, based on work-hardening analysis, it was found that the main phenomenon constraining further improvement in the ductility and strengthening was the yielding of the deformation-induced α′-martensite.
  • loading
  • [1]
    X.Q. Ni, D.C. Kong, Y. Wen, et al., Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 319. doi: 10.1007/s12613-019-1740-x
    [2]
    J.S. Li, Y. Cao, B. Gao, Y.S. Li, and Y.T. Zhu, Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure, J. Mater. Sci., 53(2018), No. 14, p. 10442. doi: 10.1007/s10853-018-2322-4
    [3]
    M.B. dos Reis Silva, J.M. Cabrera, O. Balancin, and A.M. Jorge, Thermomechanical controlled processing to achieve very fine grains in the ISO 5832-9 austenitic stainless steel biomaterial, Mater. Charact., 127(2017), p. 153. doi: 10.1016/j.matchar.2017.02.026
    [4]
    M.M. Zhao, H.Y. Wu, J.N. Lu, G.S. Sun, and L.X. Du, Effect of grain size on mechanical property and corrosion behavior of a metastable austenitic stainless steel, Mater. Charact., 194(2022), art. No. 112360. doi: 10.1016/j.matchar.2022.112360
    [5]
    S.K. Pradhan, P. Bhuyan, L.R. Bairi, and S. Mandal, Comprehending the role of individual microstructural features on electrochemical response and passive film behaviour in type 304 austenitic stainless steel, Corros. Sci., 180(2021), art. No. 109187. doi: 10.1016/j.corsci.2020.109187
    [6]
    K. Kishore, A.K. Chandan, B.K. Sahoo, and L.K. Meena, Novel observation of dominant role of strain rate over strain during pre-straining on corrosion behaviour of 304L austenitic stainless steel, Mater. Chem. Phys., 277(2022), art. No. 125522. doi: 10.1016/j.matchemphys.2021.125522
    [7]
    A. Järvenpää, S. Ghosh, A. Khosravifard, M. Jaskari, and A. Hamada, A new processing route to develop nano-grained structure of a TRIP-aided austenitic stainless-steel using double reversion fast-heating annealing, Mater. Sci. Eng. A, 808(2021), art. No. 140917. doi: 10.1016/j.msea.2021.140917
    [8]
    X.Q. Yang, Y. Liu, J.W. Ye, R.Q. Wang, T.C. Zhou, and B.Y. Mao, Enhanced mechanical properties and formability of 316L stainless steel materials 3D-printed using selective laser melting, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1396. doi: 10.1007/s12613-019-1837-2
    [9]
    J.S. Li, Z.C. Zhou, S.Z. Wang, et al., Deformation mechanisms and enhanced mechanical properties of 304L stainless steel at liquid nitrogen temperature, Mater. Sci. Eng. A, 798(2020), art. No. 140133. doi: 10.1016/j.msea.2020.140133
    [10]
    K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent developments in stainless steels, Mater. Sci. Eng.: R: Rep., 65(2009), No. 4-6, p. 39. doi: 10.1016/j.mser.2009.03.001
    [11]
    B. Yang, Q. He, H. Wang, et al., Achieving an extra-high-strength yet ductile steel by synergistic effects of TRIP and maraging, Mater. Res. Lett., 11(2023), No. 7, p. 578. doi: 10.1080/21663831.2023.2194910
    [12]
    S. Hao, L. Chen, Q.X. Jia, et al., A novel method for experimentally assessing strength contribution of strain-induced martensitic transformation in a lean duplex stainless steel, Mater. Charact., 191(2022), art. No. 112097. doi: 10.1016/j.matchar.2022.112097
    [13]
    M. Zhang, X.Y. Sun, B.D. Zhang, Q.Y. Cen, and H. Dong, Plasticity enhancement mechanism: Effect of the annealing temperature on strain-induced segmented martensitic transformations and Portevin–Le Chatelier bands in 7Mn steel after deep cryogenic treatment, Mater. Charact., 194(2022), art. No. 112475. doi: 10.1016/j.matchar.2022.112475
    [14]
    M.J. Sohrabi, H. Mirzadeh, S. Sadeghpour, and R. Mahmudi, Explaining the drop of work-hardening rate and limitation of transformation-induced plasticity effect in metastable stainless steels during tensile deformation, Scripta Mater., 231(2023), art. No. 115465. doi: 10.1016/j.scriptamat.2023.115465
    [15]
    M.H. Zhang, H.Y. Chen, Y.K. Wang, et al., Deformation-induced martensitic transformation kinetics and correlative micromechanical behavior of medium-Mn transformation-induced plasticity steel, J. Mater. Sci. Technol., 35(2019), No. 8, p. 1779. doi: 10.1016/j.jmst.2019.04.007
    [16]
    M.J. Sohrabi, M.S. Mehranpour, J.H. Lee, A. Heydarinia, H. Mirzadeh, and H.S. Kim, Overcoming strength-ductility trade-off in Si-containing transformation-induced plasticity high-entropy alloys via metastability engineering, Mater. Sci. Eng. A, 552(2024), art. No. 146766.
    [17]
    O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships, Curr. Opin. Solid State Mater. Sci., 15(2011), No. 4, p. 141. doi: 10.1016/j.cossms.2011.04.002
    [18]
    O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development–properties–application, Int. J. Plast., 16(2000), No. 10, p. 1391.
    [19]
    B. De Cooman, Y. Estrin, and S.K. Kim, Twinning-induced plasticity (TWIP) steels, Acta Mater., 142(2017), p. 283.
    [20]
    M.J. Sohrabi, H. Mirzadeh, S. Sadeghpour, A.R. Geranmayeh, and R. Mahmudi, Tailoring the strength-ductility balance of a commercial austenitic stainless steel with combined TWIP and TRIP effects, Arch. Civ. Mech. Eng., 23(2023), No. 3, art. No. 170. doi: 10.1007/s43452-023-00718-3
    [21]
    A. Kovalev, A. Jahn, A. Weiß, and P.R. Scheller, Characterization of the TRIP/TWIP effect in austenitic stainless steels using stress–temperature–transformation (STT) and deformation–temperature–yransformation (DTT) diagrams, Steel Res. Int., 82(2011), No. 1, p. 45. doi: 10.1002/srin.201000245
    [22]
    R. Kalsar, S. Sanamar, N. Schell, et al. , In-situ study of tensile deformation behaviour of medium Mn TWIP/TRIP steel using synchrotron radiation, Mater. Sci. Eng. A, 857(2022), art. No. 144013. doi: 10.1016/j.msea.2022.144013
    [23]
    C.Y. Lee, J. Jeong, J. Han, S.J. Lee, S. Lee, and Y.K. Lee, Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite, Acta Mater., 84(2015), p. 1. doi: 10.1016/j.actamat.2014.10.032
    [24]
    J.T. Benzing, W.A. Poling, D.T. Pierce, et al., Effects of strain rate on mechanical properties and deformation behavior of an austenitic Fe–25Mn–3Al–3Si TWIP–TRIP steel, Mater. Sci. Eng. A, 711(2018), p. 78. doi: 10.1016/j.msea.2017.11.017
    [25]
    T.W.J. Kwok, P. Gong, R. Rose, and D. Dye, The relative contributions of TWIP and TRIP to strength in fine grained medium-Mn steels, Mater. Sci. Eng. A, 855(2022), art. No. 143864. doi: 10.1016/j.msea.2022.143864
    [26]
    T.H. Wang, S. Shukla, B. Gwalani, et al., Co-introduction of precipitate hardening and TRIP in a TWIP high-entropy alloy using friction stir alloying, Sci. Rep., 11(2021), No. 1, art. No. 1579. doi: 10.1038/s41598-021-81350-0
    [27]
    M.J. Sohrabi, A. Kalhor, H. Mirzadeh, K. Rodak, and H.S. Kim, Tailoring the strengthening mechanisms of high-entropy alloys toward excellent strength-ductility synergy by metalloid silicon alloying: A review, Prog. Mater. Sci.,144(2024), art. No.101295. doi: 10.1016/j.pmatsci.2024.101295
    [28]
    E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Understanding martensite and twin formation in austenitic steels: A model describing TRIP and TWIP effects, Acta Mater., 128(2017), p. 120. doi: 10.1016/j.actamat.2017.02.004
    [29]
    M.J. Sohrabi, M. Naghizadeh, and H. Mirzadeh, Deformation-induced martensite in austenitic stainless steels: A review, Arch. Civ. Mech. Eng., 20(2020), No. 4, art. No. 124. doi: 10.1007/s43452-020-00130-1
    [30]
    T.S. Byun, N. Hashimoto, and K. Farrell, Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels, Acta Mater., 52(2004), No. 13, p. 3889. doi: 10.1016/j.actamat.2004.05.003
    [31]
    G. Cios, T. Tokarski, A. Żywczak, et al., The investigation of strain-induced martensite reverse transformation in AISI 304 austenitic stainless steel, Metall. Mater. Trans. A, 48(2017), No. 10, p. 4999. doi: 10.1007/s11661-017-4228-1
    [32]
    M.H. Huang, C.C. Wang, L.Y. Wang, J.L. Wang, A. Mogucheva, and W. Xu, Influence of DIMT on impact toughness: Relationship between crack propagation and the α′-martensite morphology in austenitic steel, Mater. Sci. Eng. A, 844(2022), art. No. 143191. doi: 10.1016/j.msea.2022.143191
    [33]
    A.S. Hamada, L.P. Karjalainen, R.D.K. Misra, and J. Talonen, Contribution of deformation mechanisms to strength and ductility in two Cr–Mn grade austenitic stainless steels, Mater. Sci. Eng. A, 559(2013), p. 336. doi: 10.1016/j.msea.2012.08.108
    [34]
    S. Martin, S. Wolf, U. Martin, L. Krüger, and D. Rafaja, Deformation mechanisms in austenitic TRIP/TWIP steel as a function of temperature, Metall. Mater. Trans. A, 47(2016), No. 1, p. 49. doi: 10.1007/s11661-014-2684-4
    [35]
    A. Weiß, H. Gutte, and J. Mola, Contributions of ε and α′ TRIP effects to the strength and ductility of AISI 304 (X5CrNi18-10) austenitic stainless steel, Metall. Mater. Trans. A, 47(2016), No. 1, p. 112. doi: 10.1007/s11661-014-2726-y
    [36]
    A. Weiß, H. Gutte, and P.R. Scheller, Deformation induced martensite formation and its effect on transformation induced plasticity (TRIP), Steel Res. Int., 77(2006), No. 9-10, p. 727. doi: 10.1002/srin.200606454
    [37]
    A. Zergani, H. Mirzadeh, and R. Mahmudi, Unraveling the effect of deformation temperature on the mechanical behavior and transformation-induced plasticity of the SUS304L stainless steel, Steel Res. Int., 91(2020), No. 9, art. No. 2000114. doi: 10.1002/srin.202000114
    [38]
    G.C. Soares, M.C.M. Rodrigues, and L. de Arruda Santos, Influence of temperature on mechanical properties, fracture morphology and strain hardening behavior of a 304 stainless steel, Mater. Res., 20(2017), No. suppl 2, p. 141.
    [39]
    A. Etienne, B. Radiguet, C. Genevois, J.M. Le Breton, R. Valiev, and P. Pareige, Thermal stability of ultrafine-grained austenitic stainless steels, Mater. Sci. Eng. A, 527(2010), No. 21-22, p. 5805. doi: 10.1016/j.msea.2010.05.049
    [40]
    M. Naghizadeh and H. Mirzadeh, Modeling the kinetics of deformation-induced martensitic transformation in AISI 316 metastable austenitic stainless steel, Vacuum, 157(2018), p. 243. doi: 10.1016/j.vacuum.2018.08.066
    [41]
    R.G. Xiong, R.Y. Fu, Y. Su, Q. Li, X.C. Wei, and L. Li, Tensile properties of TWIP steel at high strain rate, J. Iron Steel Res. Int., 16(2009), No. 1, p. 81. doi: 10.1016/S1006-706X(09)60015-7
    [42]
    Z.C. Luo and M.X. Huang, Revisit the role of deformation twins on the work-hardening behaviour of twinning-induced plasticity steels, Scripta Mater., 142(2018), p. 28. doi: 10.1016/j.scriptamat.2017.08.017
    [43]
    A. Nabizada, A. Zarei-Hanzaki, H.R. Abedi, M.H. Barati, P. Asghari-Rad, and H.S. Kim, The high temperature mechanical properties and the correlated microstructure/texture evolutions of a TWIP high entropy alloy, Mater. Sci. Eng. A, 802(2021), art. No. 140600. doi: 10.1016/j.msea.2020.140600
    [44]
    D. Molnár, X. Sun, S. Lu, W. Li, G. Engberg, and L. Vitos, Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel, Mater. Sci. Eng. A, 759(2019), p. 490. doi: 10.1016/j.msea.2019.05.079
    [45]
    W. Bleck, New insights into the properties of high-manganese steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 782. doi: 10.1007/s12613-020-2166-1
    [46]
    Y.T. Wei, Q. Lu, Z.D. Kou, T. Feng, and Q.Q. Lai, Microstructure and strain hardening behavior of the transformable 316L stainless steel processed by cryogenic pre-deformation, Mater. Sci. Eng. A, 862(2023), art. No. 144424. doi: 10.1016/j.msea.2022.144424
    [47]
    D.X. Wei, L.Q. Wang, Y.J. Zhang, et al., Metalloid substitution elevates simultaneously the strength and ductility of face-centered-cubic high-entropy alloys, Acta Mater., 225(2022), art. No. 117571. doi: 10.1016/j.actamat.2021.117571
    [48]
    A. Järvenpää, M. Jaskari, A. Kisko, and P. Karjalainen, Processing and properties of reversion-treated austenitic stainless steels, Metals, 10(2020), No. 2, art. No. 281. doi: 10.3390/met10020281
    [49]
    M.B. Jabłońska, Effect of the conversion of the plastic deformation work to heat on the behaviour of TWIP steels: A review, Arch. Civ. Mech. Eng., 23(2023), No. 2, art. No. 135. doi: 10.1007/s43452-023-00656-0
    [50]
    Y. Tian, O.I. Gorbatov, A. Borgenstam, A.V. Ruban, and P. Hedström, Deformation microstructure and deformation-induced martensite in austenitic Fe–Cr–Ni alloys depending on stacking fault energy, Metall. Mater. Trans. A, 48(2017), No. 1, p. 1. doi: 10.1007/s11661-016-3839-2
    [51]
    M.J. Sohrabi, H. Mirzadeh, S. Sadeghpour, and R. Mahmudi, Grain size dependent mechanical behavior and TRIP effect in a metastable austenitic stainless steel, Int. J. Plast., 160(2023), art. No. 103502. doi: 10.1016/j.ijplas.2022.103502
    [52]
    M.H. Huang, L.Y. Wang, C.C. Wang, A. Mogucheva, and W. Xu, Characterization of deformation-induced martensite with various AGSs upon Charpy impact loading and correlation with transformation mechanisms, Mater. Charact., 184(2022), art. No. 111704. doi: 10.1016/j.matchar.2021.111704
    [53]
    K. Datta, R. Delhez, P.M. Bronsveld, J. Beyer, H.J.M. Geijselaers, and J. Post, A low-temperature study to examine the role of ε-martensite during strain-induced transformations in metastable austenitic stainless steels, Acta Mater., 57(2009), No. 11, p. 3321. doi: 10.1016/j.actamat.2009.03.039
    [54]
    A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, and R.J. Comstock, Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel, Metall. Mater. Trans. A, 37(2006), No. 6, p. 1875. doi: 10.1007/s11661-006-0130-y
    [55]
    Y. Tomota, M. Strum, and J.W. Morris, Microstructural dependence of Fe-high Mn tensile behavior, Metall. Trans. A, 17(1986), No. 3, p. 537. doi: 10.1007/BF02643961
    [56]
    Y.H. Jo, W.M. Choi, D.G. Kim, et al., FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V10Cr10Fe45Co xNi35– x medium-entropy alloys, Sci. Rep., 9(2019), No. 1, art. No. 2948. doi: 10.1038/s41598-019-39570-y
    [57]
    H.K.D.H Bhadeshia, Worked Examples in the Geometry of Crystals, The Institute of Metals, London, 2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Share Article

    Article Metrics

    Article Views(451) PDF Downloads(43) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return