Cite this article as: |
Zijian Peng, Yuhao Wang, Shuqi Wang, Junteng Yao, Qingyuan Zhao, Enyu Xie, Guoliang Chen, Zhigang Wang, Zhanguo Liu, Yaming Wang, and Jiahu Ouyang, Improvement strategy on thermophysical properties of A2B2O7-type rare earth zirconates for thermal barrier coatings applications: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 1147-1165. https://doi.org/10.1007/s12613-024-2853-4 |
Jiahu Ouyang E-mail: ouyangjh@hit.edu.cn
[1] |
H.F. Chen, C. Zhang, Y.C. Liu, et al., Recent progress in thermal/environmental barrier coatings and their corrosion resistance, Rare Met., 39(2020), No. 5, p. 498. doi: 10.1007/s12598-019-01307-1
|
[2] |
N.P. Padture, M. Gell, and E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications, Science, 296(2002), No. 5566, p. 280. doi: 10.1126/science.1068609
|
[3] |
N.P. Padture, Advanced structural ceramics in aerospace propulsion, Nat. Mater., 15(2016), p. 804. doi: 10.1038/nmat4687
|
[4] |
C.G. Levi, J.W. Hutchinson, M.H. Vidal-Sétif, and C.A. Johnson, Environmental degradation of thermal-barrier coatings by molten deposits, MRS Bull., 37(2012), No. 10, p. 932. doi: 10.1557/mrs.2012.230
|
[5] |
D.R. Clarke and C.G. Levi, Materials design for the next generation thermal barrier coatings, Annu. Rev. Mater. Res., 33(2003), p. 383. doi: 10.1146/annurev.matsci.33.011403.113718
|
[6] |
Z.G. Liu, W.H. Zhang, J.H. Ouyang, and Y. Zhou, Novel double-ceramic-layer (La0.8Eu0.2)2Zr2O7/YSZ thermal barrier coatings deposited by plasma spraying, Ceram. Int., 40(2014), No. 7, p. 11277. doi: 10.1016/j.ceramint.2014.03.159
|
[7] |
Z.G. Liu, W.H. Zhang, J.H. Ouyang, and Y. Zhou, Novel thermal barrier coatings based on rare-earth zirconates/YSZ double-ceramic-layer system deposited by plasma spraying, J. Alloys Compd., 647(2015), p. 438. doi: 10.1016/j.jallcom.2015.05.189
|
[8] |
U. Schulz, C. Leyens, K. Fritscher, et al., Some recent trends in research and technology of advanced thermal barrier coatings, Aerosp. Sci. Technol., 7(2003), No. 1, p. 73. doi: 10.1016/S1270-9638(02)00003-2
|
[9] |
X.Q. Cao, R. Vassen, and D. Stoever, Ceramic materials for thermal barrier coatings, J. Eur. Ceram. Soc., 24(2004), No. 1, p. 1. doi: 10.1016/S0955-2219(03)00129-8
|
[10] |
R. Vassen, X.Q. Cao, F. Tietz, D. Basu, and D. Stöver, Zirconates as new materials for thermal barrier coatings, J. Am. Ceram. Soc., 83(2000), No. 8, p. 2023. doi: 10.1111/j.1151-2916.2000.tb01506.x
|
[11] |
M. Zhao, W. Pan, C.L. Wan, Z.X. Qu, Z. Li, and J. Yang, Defect engineering in development of low thermal conductivity materials: A review, J. Eur. Ceram. Soc., 37(2017), No. 1, p. 1. doi: 10.1016/j.jeurceramsoc.2016.07.036
|
[12] |
J. Gild, M. Samiee, J.L. Braun, et al., High-entropy fluorite oxides, J. Eur. Ceram. Soc., 38(2018), No. 10, p. 3578. doi: 10.1016/j.jeurceramsoc.2018.04.010
|
[13] |
W.J. Lackey, D.P. Stinton, G.A. Cerny, A.C. Schaffhauser, and L.L. Fehrenbacher, Ceramic coatings for advanced heat engines-A review and projection, Adv. Ceram. Mater., 2(1987), No. 1, p. 24. doi: 10.1111/j.1551-2916.1987.tb00048.x
|
[14] |
C.H. Xu, H.Y. Jin, Q.F. Zhang, et al., A novel Co-ions complexation method to synthesize pyrochlore La2Zr2O7, J. Eur. Ceram. Soc., 37(2017), No. 8, p. 2871. doi: 10.1016/j.jeurceramsoc.2017.02.045
|
[15] |
H.S. Zhang, Q. Xu, F.C. Wang, L. Liu, Y. Wei, and X.G. Chen, Preparation and thermophysical properties of (Sm0.5La0.5)2Zr2O7 and (Sm0.5La0.5)2(Zr0.8Ce0.2)2O7 ceramics for thermal barrier coatings, J. Alloys Compd., 475(2009), No. 1-2, p. 624. doi: 10.1016/j.jallcom.2008.07.068
|
[16] |
N.P. Padture and P.G. Klemens, Low thermal conductivity in garnets, J. Am. Ceram. Soc., 80(1997), No. 4, p. 1018. doi: 10.1111/j.1151-2916.1997.tb02937.x
|
[17] |
C.J. Friedrich, R. Gadow, and M.H. Lischka, Lanthanum hexaaluminate thermal barrier coatings, [in] 25th Annual Conference on Composites , Advanced Ceramics , Materials , and Structures : B : Ceramic Engineering and Science Proceedings, Florida, 2001, p. 375.
|
[18] |
G.W. Schafer and R. Gadow, Lanthane aluminate thermal barrier coating, [in] 23nd Annual Conference on Composites , Advanced Ceramics , Materials , and Structures B : Ceramic Engineering and Science Proceedings, Hoboken, 1999, p. 291.
|
[19] |
L. Chen, M.Y. Hu, P. Wu, and J. Feng, Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics, J. Am. Ceram. Soc., 102(2019), No. 8, p. 4809. doi: 10.1111/jace.16328
|
[20] |
L. Chen, P. Song, and J. Feng, Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics, Scripta Mater., 152(2018), p. 117. doi: 10.1016/j.scriptamat.2018.03.042
|
[21] |
J. Yang, W. Pan, Y. Han, M. Zhao, M.Z. Huang, and C.L. Wan, Mechanical properties, oxygen barrier property, and chemical stability of RE3NbO7 for thermal barrier coating, J. Am. Ceram. Soc., 103(2020), No. 4, p. 2302. doi: 10.1111/jace.16952
|
[22] |
D.D. Shi, Z.B. Cao, Y.H. Huang, et al., Highly efficient thermal insulation in crystalline weberites RE3NbO7 (RE = La, Nd, Sm, Eu, Gd) with glass-like thermal conductivity, Ceram. Int., 48(2022), No. 2, p. 2686. doi: 10.1016/j.ceramint.2021.10.053
|
[23] |
P.E.D. Morgan and D.B. Marshall, Ceramic composites of monazite and alumina, J. Am. Ceram. Soc., 78(1995), No. 6, p. 1553. doi: 10.1111/j.1151-2916.1995.tb08851.x
|
[24] |
R. Vassen, G. Kerkhoff, and D. Stöver, Development of a micromechanical life prediction model for plasma sprayed thermal barrier coatings, Mater. Sci. Eng. A, 303(2001), No. 1-2, p. 100. doi: 10.1016/S0921-5093(00)01853-0
|
[25] |
S. Akrami, P. Edalati, M. Fuji, and K. Edalati, High-entropy ceramics: Review of principles, production and applications, Mater. Sci. Eng. R Rep., 146(2021), art. No. 100644. doi: 10.1016/j.mser.2021.100644
|
[26] |
R.Z. Zhang and M.J. Reece, Review of high entropy ceramics: Design, synthesis, structure and properties, J. Mater. Chem. A, 7(2019), No. 39, p. 22148. doi: 10.1039/C9TA05698J
|
[27] |
A.J. Wright and J. Luo, A step forward from high-entropy ceramics to compositionally complex ceramics: A new perspective, J. Mater. Sci., 55(2020), No. 23, p. 9812. doi: 10.1007/s10853-020-04583-w
|
[28] |
A.J. Wright, Q.Y. Wang, C.Z. Hu, Y.T. Yeh, R.K. Chen, and J. Luo, Single-phase duodenary high-entropy fluorite/pyrochlore oxides with an order-disorder transition, Acta Mater., 211(2021), art. No. 116858. doi: 10.1016/j.actamat.2021.116858
|
[29] |
Z.F. Zhao, H.M. Xiang, F.Z. Dai, Z.J. Peng, and Y.C. Zhou, (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: A novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate, J. Mater. Sci. Technol., 35(2019), No. 11, p. 2647. doi: 10.1016/j.jmst.2019.05.054
|
[30] |
S. Divilov, H. Eckert, D. Hicks, et al., Disordered enthalpy-entropy descriptor for high-entropy ceramics discovery, Nature, 625(2024), No. 7993, p. 66. doi: 10.1038/s41586-023-06786-y
|
[31] |
G. Grimvall, Thermophysical Properties of Materias, Elsevier, Amsterdam, 1999.
|
[32] |
W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, John Wiley & Sons, New York, 1976.
|
[33] |
M.G. Holland, Analysis of lattice thermal conductivity, Phys. Rev., 132(1963), No. 6, p. 2461. doi: 10.1103/PhysRev.132.2461
|
[34] |
B. Abeles, Lattice thermal conductivity of disordered semiconductor alloys at high temperatures, Phys. Rev., 131(1963), No. 5, p. 1906. doi: 10.1103/PhysRev.131.1906
|
[35] |
P.G. Klemens, Thermal resistance due to point defects at high temperatures, Phys. Rev., 119(1960), No. 2, p. 507. doi: 10.1103/PhysRev.119.507
|
[36] |
J. Callaway and H.C. von Baeyer, Effect of point imperfections on lattice thermal conductivity, Phys. Rev., 120(1960), No. 4, p. 1149. doi: 10.1103/PhysRev.120.1149
|
[37] |
X.D. He, Y.B. Li, L.D. Wang, Y. Sun, and S. Zhang, High emissivity coatings for high temperature application: Progress and prospect, Thin Solid Films, 517(2009), No. 17, p. 5120. doi: 10.1016/j.tsf.2009.03.175
|
[38] |
D.L. Zhao, A. Aili, Y. Zhai, et al., Radiative sky cooling: Fundamental principles, materials, and applications, Appl. Phys. Rev., 6(2019), No. 2, art. No. 021306. doi: 10.1063/1.5087281
|
[39] |
B. Zhao, M.K. Hu, X.Z. Ao, N. Chen, and G. Pei, Radiative cooling: A review of fundamentals, materials, applications, and prospects, Appl. Energy, 236(2019), p. 489. doi: 10.1016/j.apenergy.2018.12.018
|
[40] |
H.Z. Liu, J.H. Ouyang, Z.G. Liu, and Y.M. Wang, Thermo-optical properties of LaMAl11O19 (M=Mg, Mn, Fe) hexaaluminates for high-temperature thermal protection applications, J. Am. Ceram. Soc., 94(2011), No. 10, p. 3195. doi: 10.1111/j.1551-2916.2011.04761.x
|
[41] |
G.L. Chen, H.Y. Fu, Y.C. Zou, et al., A promising radiation thermal protection coating based on lamellar porous Ca–Cr co-doped Y3NbO7 ceramic, Adv. Funct. Mater., 33(2023), No. 47, art. No. 2305650. doi: 10.1002/adfm.202305650
|
[42] |
S.M. Wang, F.H. Kuang, Q.Z. Yan, C.C. Ge, and L.H. Qi, Crystallization and infrared radiation properties of iron ion doped cordierite glass-ceramics, J. Alloys Compd., 509(2011), No. 6, p. 2819. doi: 10.1016/j.jallcom.2010.11.126
|
[43] |
K. Krieble, T. Schaeffer, J.A. Paulsen, A.P. Ring, C.C.H. Lo, and J.E. Snyder, Mössbauer spectroscopy investigation of Mn-substituted Co–ferrite (CoMn xFe2– xO4), J. Appl. Phys., 97(2005), No. 10, art. No. 10F101. doi: 10.1063/1.1846271
|
[44] |
M.A. Subramanian, G. Aravamudan, and G.V.S. Rao, Oxide pyrochlores–A review, Prog. Solid State Chem., 15(1983), No. 2, p. 55. doi: 10.1016/0079-6786(83)90001-8
|
[45] |
Z.G. Liu, J.H. Ouyang, and Y. Zhou, Preparation and thermophysical properties of (Nd xGd1− x)2Zr2O7 ceramics, J. Mater. Sci., 43(2008), No. 10, p. 3596. doi: 10.1007/s10853-008-2570-9
|
[46] |
Z.G. Liu, J.H. Ouyang, and Y. Zhou, Structural evolution and thermophysical properties of (Sm xGd1– x)2Zr2O7 (0 ≤ x ≤ 1.0) ceramics, J. Alloys Compd., 472(2009), No. 1-2, p. 319. doi: 10.1016/j.jallcom.2008.04.042
|
[47] |
Z.G. Liu, J.H. Ouyang, Y. Zhou, J. Li, and X.L. Xia, Influence of ytterbium- and samarium-oxides codoping on structure and thermal conductivity of zirconate ceramics, J. Eur. Ceram. Soc., 29(2009), No. 4, p. 647. doi: 10.1016/j.jeurceramsoc.2008.07.033
|
[48] |
Z.G. Liu, J.H. Ouyang, Y. Zhou, J. Li, and X.L. Xia, Densification, structure, and thermophysical properties of ytterbium–gadolinium zirconate ceramics, Int. J. Appl. Ceram. Technol., 6(2009), No. 4, p. 485. doi: 10.1111/j.1744-7402.2008.02289.x
|
[49] |
C.L. Wan, W. Zhang, Y.F. Wang, et al., Glass-like thermal conductivity in ytterbium-doped lanthanum zirconate pyrochlore, Acta Mater., 58(2010), No. 18, p. 6166. doi: 10.1016/j.actamat.2010.07.035
|
[50] |
C.L. Wan, Z.X. Qu, A.B. Du, and W. Pan, Order-disorder transition and unconventional thermal conductivities of the (Sm1− xYb x)2Zr2O7 series, J. Am. Ceram. Soc., 94(2011), No. 2, p. 592. doi: 10.1111/j.1551-2916.2010.04113.x
|
[51] |
X.R. Ren, C.L. Wan, M. Zhao, J. Yang, and W. Pan, Mechanical and thermal properties of fine-grained quasi-eutectoid (La1– xYb x)2Zr2O7 ceramics, J. Eur. Ceram. Soc., 35(2015), No. 11, p. 3145. doi: 10.1016/j.jeurceramsoc.2015.04.024
|
[52] |
Y. Wu, L. Zheng, W.T. He, J. He, and H.B. Guo, Effects of Yb3+ doping on phase structure, thermal conductivity and fracture toughness of (Nd1– xYb x)2Zr2O7, Ceram. Int., 45(2019), No. 3, p. 3133. doi: 10.1016/j.ceramint.2018.10.213
|
[53] |
H.S. Zhang, K. Sun, Q. Xu, F.C. Wang, and L. Liu, Preparation and thermal conductivity of Sm2(Zr0.6Ce0.4)2O7 ceramic, J. Mater. Eng. Perform., 18(2009), No. 8, p. 1140. doi: 10.1007/s11665-008-9346-x
|
[54] |
J. Yang, M. Zhao, L. Zhang, Z.Y. Wang, and W. Pan, Pronounced enhancement of thermal expansion coefficients of rare-earth zirconate by cerium doping, Scripta Mater., 153(2018), p. 1. doi: 10.1016/j.scriptamat.2018.04.031
|
[55] |
Q.B. Fan, F. Zhang, F.C. Wang, and L. Wang, Molecular dynamics calculation of thermal expansion coefficient of a series of rare-earth zirconates, Comput. Mater. Sci., 46(2009), No. 3, p. 716. doi: 10.1016/j.commatsci.2009.02.033
|
[56] |
H.M. Zhou and D.Q. Yi, Effect of rare earth doping on thermo-physical properties of lanthanum zirconate ceramic for thermal barrier coatings, J. Rare Earths, 26(2008), No. 6, p. 770. doi: 10.1016/S1002-0721(09)60002-8
|
[57] |
J. Wu, X.Z. Wei, N.P. Padture, et al., Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications, J. Am. Ceram. Soc., 85(2002), No. 12, p. 3031. doi: 10.1111/j.1151-2916.2002.tb00574.x
|
[58] |
Q. Xu, W. Pan, J.D. Wang, et al., Preparation and thermophysical properties of Dy2Zr2O7 ceramic for thermal barrier coatings, Mater. Lett., 59(2005), No. 22, p. 2804. doi: 10.1016/j.matlet.2005.03.061
|
[59] |
Q. Xu, W. Pan, J.D. Wang, et al., Rare-earth zirconate ceramics with fluorite structure for thermal barrier coatings, J. Am. Ceram. Soc., 89(2006), No. 1, p. 340. doi: 10.1111/j.1551-2916.2005.00667.x
|
[60] |
J. Feng, B. Xiao, R. Zhou, and W. Pan, Thermal conductivity of rare earth zirconate pyrochlore from first principles, Scr. Mater., 68(2013), No. 9, p. 727. doi: 10.1016/j.scriptamat.2013.01.010
|
[61] |
J. Yang, M. Shahid, M. Zhao, J. Feng, C.L. Wan, and W. Pan, Physical properties of La2B2O7 (B = Zr, Sn, Hf and Ge) pyrochlore: First-principles calculations, J. Alloys Compd., 663(2016), p. 834. doi: 10.1016/j.jallcom.2015.12.189
|
[62] |
G.Q. Lan, B. Ouyang, Y.S. Xu, J. Song, and Y. Jiang, Predictions of thermal expansion coefficients of rare-earth zirconate pyrochlores: A quasi-harmonic approximation based on stable phonon modes, J. Appl. Phys., 119(2016), No. 23, art. No. 235103. doi: 10.1063/1.4954280
|
[63] |
X.Q. Wang, X. Bai, W. Xiao, et al., Calculation of thermal expansion coefficient of rare earth zirconate system at high temperature by first principles, Materials, 15(2022), No. 6, art. No. 2264. doi: 10.3390/ma15062264
|
[64] |
Q. Chen, W. Song, Y. Xie, Z.X. Yan, J. Xu, and F. Gao, Thermal expansion coefficient of nonstoichiometric gadolinium zirconate: First-principles calculations and experimental study, J. Phys. Chem. Solids, 178(2023), art. No. 111363. doi: 10.1016/j.jpcs.2023.111363
|
[65] |
A. Joulia, M. Vardelle, and S. Rossignol, Synthesis and thermal stability of Re2Zr2O7, (Re = La, Gd) and La2(Zr1– xCe x)2O7– δ compounds under reducing and oxidant atmospheres for thermal barrier coatings, J. Eur. Ceram. Soc., 33(2013), No. 13-14, p. 2633. doi: 10.1016/j.jeurceramsoc.2013.03.030
|
[66] |
C. Kaliyaperumal, A. Sankarakumar, J. Palanisamy, and T. Paramasivam, Fluorite to pyrochlore phase transformation in nanocrystalline Nd2Zr2O7, Mater. Lett., 228(2018), p. 493. doi: 10.1016/j.matlet.2018.06.087
|
[67] |
H.B. Zhao, C.G. Levi, and H.N.G. Wadley, Vapor deposited samarium zirconate thermal barrier coatings, Surf. Coat. Technol., 203(2009), No. 20-21, p. 3157. doi: 10.1016/j.surfcoat.2009.03.048
|
[68] |
J.H. Yu, H.Y. Zhao, S.Y. Tao, X.M. Zhou, and C.X. Ding, Thermal conductivity of plasma sprayed Sm2Zr2O7 coatings, J. Eur. Ceram. Soc., 30(2010), No. 3, p. 799. doi: 10.1016/j.jeurceramsoc.2009.09.010
|
[69] |
H.B. Zhao, M.R. Begley, A. Heuer, R. Sharghi-Moshtaghin, and H.N.G. Wadley, Reaction, transformation and delamination of samarium zirconate thermal barrier coatings, Surf. Coat. Technol., 205(2011), No. 19, p. 4355. doi: 10.1016/j.surfcoat.2011.03.028
|
[70] |
S.T. Aruna, C. Sanjeeviraja, N. Balaji, and N.T. Manikandanath, Properties of plasma sprayed La2Zr2O7 coating fabricated from powder synthesized by a single-step solution combustion method, Surf. Coat. Technol., 219(2013), p. 131. doi: 10.1016/j.surfcoat.2013.01.016
|
[71] |
C. Jiang, E.H. Jordan, A.B. Harris, M. Gell, and J. Roth, Double-layer gadolinium zirconate/yttria-stabilized zirconia thermal barrier coatings deposited by the solution precursor plasma spray process, J. Therm. Spray Technol., 24(2015), No. 6, p. 895. doi: 10.1007/s11666-015-0283-6
|
[72] |
S. Mahade, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Thermal conductivity and thermal cyclic fatigue of multilayered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray, Surf. Coat. Technol., 283(2015), p. 329. doi: 10.1016/j.surfcoat.2015.11.009
|
[73] |
M. Martena, D. Botto, P. Fino, S. Sabbadini, M.M. Gola, and C. Badini, Modelling of TBC system failure: Stress distribution as a function of TGO thickness and thermal expansion mismatch, Eng. Fail. Anal., 13(2006), No. 3, p. 409. doi: 10.1016/j.engfailanal.2004.12.027
|
[74] |
H. Lehmann, D. Pitzer, G. Pracht, R. Vassen, and D. Stöver, Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system, J. Am. Ceram. Soc., 86(2003), No. 8, p. 1338. doi: 10.1111/j.1151-2916.2003.tb03473.x
|
[75] |
Z.G. Liu, J.H. Ouyang, B.H. Wang, Y. Zhou, and J. Li, Preparation and thermophysical properties of Nd xZr1– xO2– x/2 (x = 0.1, 0.2, 0.3, 0.4, 0.5) ceramics, J. Alloys Compd., 466(2008), No. 1-2, p. 39. doi: 10.1016/j.jallcom.2007.11.147
|
[76] |
Y.Q. Guo, W.T. He, and H.B. Guo, Thermo-physical and mechanical properties of Yb2O3 and Sc2O3 co-doped Gd2Zr2O7 ceramics, Ceram. Int., 46(2020), No. 11, p. 18888. doi: 10.1016/j.ceramint.2020.04.209
|
[77] |
R.W. Yang, J. Xu, M.Y. Wei, et al., Rattler effect on the properties of multicomponent rare-earth-zirconate ceramics, Ceram. Int., 48(2022), No. 19, p. 28586. doi: 10.1016/j.ceramint.2022.06.172
|
[78] |
M.Y. Li, C.C. Lin, Y.R. Niu, J.M. Zhang, Y. Zeng, and X.M. Song, Order–disorder transition and thermal conductivities of the (NdSmEuGd)(1– x)/2Dy2 xZr2O7 series, J. Materiomics, 9(2023), No. 1, p. 138. doi: 10.1016/j.jmat.2022.08.007
|
[79] |
F.A. Zhao, H.Y. Xiao, Z.J. Liu, S.A. Li, and X.T. Zu, A DFT study of mechanical properties, thermal conductivity and electronic structures of Th-doped Gd2Zr2O7, Acta Mater., 121(2016), p. 299. doi: 10.1016/j.actamat.2016.09.018
|
[80] |
G. Lan, P.F. Ou, C. Chen, and J. Song, A complete computational route to predict reduction of thermal conductivities of complex oxide ceramics by doping: A case study of La2Zr2O7, J. Alloys Compd., 826(2020), art. No. 154224. doi: 10.1016/j.jallcom.2020.154224
|
[81] |
Z.G. Liu, J.H. Ouyang, Y. Zhou, and X.L. Xia, Effect of Ti substitution for Zr on the thermal expansion property of fluorite-type Gd2Zr2O7, Mater. Des., 30(2009), No. 9, p. 3784. doi: 10.1016/j.matdes.2009.01.030
|
[82] |
C.J. Wang, Y. Wang, X.Z. Fan, W.Z. Huang, B.L. Zou, and X.Q. Cao, Preparation and thermophysical properties of La2(Zr0.7Ce0.3)2O7 ceramic via sol–gel process, Surf. Coat. Technol., 212(2012), p. 88. doi: 10.1016/j.surfcoat.2012.09.026
|
[83] |
Y.F. Wang, F. Yang, and P. Xiao, Role and determining factor of substitutional defects on thermal conductivity: A study of La2(Zr1– xB x)2O7 (B = Hf, Ce, 0 ≤ x ≤ 0.5) pyrochlore solid solutions, Acta Mater., 68(2014), p. 106. doi: 10.1016/j.actamat.2014.01.011
|
[84] |
W. Ma, X.Y. Li, Y.C. Yin, et al., The mechanical and thermophysical properties of La2(Zr1− xCe x)2O7 ceramics, J. Alloys Compd., 660(2016), p. 85. doi: 10.1016/j.jallcom.2015.11.092
|
[85] |
L. Liu, Q. Xu, F.C. Wang, and H.S. Zhang, Thermophysical properties of complex rare-earth zirconate ceramic for thermal barrier coatings, J. Am. Ceram. Soc., 91(2008), No. 7, p. 2398. doi: 10.1111/j.1551-2916.2008.02433.x
|
[86] |
L. Liu, F.C. Wang, Z. Ma, Q. Xu, and S.G. Fang, Thermophysical properties of (Mg xLa0.5– xSm0.5)2(Zr0.7Ce0.3)2O7– x (x = 0, 0.1, 0.2, 0.3) ceramic for thermal barrier coatings, J. Am. Ceram. Soc., 94(2011), No. 3, p. 675. doi: 10.1111/j.1551-2916.2010.04385.x
|
[87] |
M. Zhao, X.R. Ren, J. Yang, and W. Pan, Low thermal conductivity of rare-earth zirconate-stannate solid solutions (Yb2Zr2O7)1– x(Ln2Sn2O7) x (Ln = Nd, Sm), J. Am. Ceram. Soc., 99(2016), No. 1, p. 293. doi: 10.1111/jace.13979
|
[88] |
Z.L. Xue, S.Q. Wu, L.H. Qian, E. Byon, and S.H. Zhang, Influence of Y2O3 and Ta2O5 co-doping on microstructure and thermal conductivity of Gd2Zr2O7 ceramics, J. Mater. Eng. Perform., 29(2020), No. 2, p. 1206. doi: 10.1007/s11665-020-04658-4
|
[89] |
L. Guo, H.B. Guo, H. Peng, and S.K. Gong, Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9Yb0.1)2Zr2O7/YSZ thermal barrier coatings, J. Eur. Ceram. Soc., 34(2014), No. 5, p. 1255. doi: 10.1016/j.jeurceramsoc.2013.11.035
|
[90] |
F.F. Zhou, L.P. Xu, C.M. Deng, et al., Nanomechanical characterization of nanostructured La2(Zr0.75Ce0.25)2O7 thermal barrier coatings by nanoindentation, Appl. Surf. Sci., 505(2020), art. No. 144585. doi: 10.1016/j.apsusc.2019.144585
|
[91] |
D.Z. Wang, S.J. Dong, J.Y. Zeng, et al., Influence of doping Mg2+ or Ti4+ captions on the microstructures, thermal radiation and thermal cycling behavior of plasma-sprayed Gd2Zr2O7 coatings, Ceram. Int., 46(2020), No. 9, p. 13054. doi: 10.1016/j.ceramint.2020.02.076
|
[92] |
Z.Y. Shen, G.X. Liu, R.D. Mu, L.M. He, Z.H. Xu, and J.W. Dai, Effects of Er stabilization on thermal property and failure behavior of Gd2Zr2O7 thermal barrier coatings, Corros. Sci., 185(2021), art. No. 109418. doi: 10.1016/j.corsci.2021.109418
|
[93] |
D. Jiang, Y.F. Wang, S. Wang, R.J. Liu, and J. Han, Thermal conductivity of air plasma sprayed yttrium heavily-doped lanthanum zirconate thermal barrier coatings, Ceram. Int., 45(2019), No. 3, p. 3199. doi: 10.1016/j.ceramint.2018.10.222
|
[94] |
B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. doi: 10.1016/j.msea.2003.10.257
|
[95] |
J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
|
[96] |
A.J. Wright, Q.Y. Wang, S.T. Ko, K.M. Chung, R.K. Chen, and J. Luo, Size disorder as a descriptor for predicting reduced thermal conductivity in medium- and high-entropy pyrochlore oxides, Scripta Mater., 181(2020), p. 76. doi: 10.1016/j.scriptamat.2020.02.011
|
[97] |
Y.H. Wang, Y.J. Jin, T. Wei, et al., Size disorder: A descriptor for predicting the single- or dual-phase formation in multi-component rare earth zirconates, J. Alloys Compd., 918(2022), art. No. 165636. doi: 10.1016/j.jallcom.2022.165636
|
[98] |
H.B. Yang, G.Q. Lin, H.P. Bu, et al., Single-phase forming ability of high-entropy ceramics from a size disorder perspective: A case study of (La0.2Eu0.2Gd0.2Y0.2Yb0.2)2Zr2O7, Ceram. Int., 48(2022), No. 5, p. 6956. doi: 10.1016/j.ceramint.2021.11.252
|
[99] |
F. Li, L. Zhou, J.X. Liu, Y.C. Liang, and G.J. Zhang, High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials, J. Adv. Ceram., 8(2019), No. 4, p. 576. doi: 10.1007/s40145-019-0342-4
|
[100] |
K. Ren, Q.K. Wang, G. Shao, X.F. Zhao, and Y.G. Wang, Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating, Scripta Mater., 178(2020), p. 382. doi: 10.1016/j.scriptamat.2019.12.006
|
[101] |
K. Ren, Q.K. Wang, Y.J. Cao, G. Shao, and Y.G. Wang, Multicomponent rare-earth cerate and zirconocerate ceramics for thermal barrier coating materials, J. Eur. Ceram. Soc., 41(2021), No. 2, p. 1720. doi: 10.1016/j.jeurceramsoc.2020.10.005
|
[102] |
J.J. He, G. He, J. Liu, and J.C. Tao, New class of high-entropy defect fluorite oxides RE2(Ce0.2Zr0.2Hf0.2Sn0.2Ti0.2)2O7 (RE = Y, Ho, Er, or Yb) as promising thermal barrier coatings, J. Eur. Ceram. Soc., 41(2021), No. 12, p. 6080. doi: 10.1016/j.jeurceramsoc.2021.05.044
|
[103] |
D. Song, T. Song, U. Paik, et al., Glass-like thermal conductivity in mass-disordered high-entropy (Y, Yb)2(Ti, Zr, Hf)2O7 for thermal barrier material, Mater. Des., 210(2021), art. No. 110059. doi: 10.1016/j.matdes.2021.110059
|
[104] |
Y.H. Zhang, M. Xie, Z.G. Wang, et al., Marked reduction in the thermal conductivity of (La0.2Gd0.2Y0.2Yb0.2Er0.2)2Zr2O7 high-entropy ceramics by substituting Zr4+ with Ti4+, Ceram. Int., 48(2022), No. 7, p. 9602. doi: 10.1016/j.ceramint.2021.12.158
|
[105] |
X.W. Luo, L.R. Luo, X.F. Zhao, et al., Single-phase rare-earth high-entropy zirconates with superior thermal and mechanical properties, J. Eur. Ceram. Soc., 42(2022), No. 5, p. 2391. doi: 10.1016/j.jeurceramsoc.2021.12.080
|
[106] |
X.W. Luo, R.Q. Huang, C.H. Xu, S. Huang, S.E. Hou, and H.Y. Jin, Designing high-entropy rare-earth zirconates with tunable thermophysical properties for thermal barrier coatings, J. Alloys Compd., 926(2022), art. No. 166714. doi: 10.1016/j.jallcom.2022.166714
|
[107] |
R.X. Yan, W.P. Liang, Q. Miao, et al., Mechanical, thermal and CMAS resistance properties of high-entropy (Gd0.2Y0.2Er0.2Tm0.2Yb0.2)2Zr2O7 ceramics, Ceram. Int., 49(2023), No. 12, p. 20729. doi: 10.1016/j.ceramint.2023.03.205
|
[108] |
Y.H. Zhang, M. Xie, Z.G. Wang, et al., Unveiling the underlying mechanism of unusual thermal conductivity behavior in multicomponent high-entropy (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1– xCe x)2O7 ceramics, J. Alloys Compd., 958(2023), art. No. 170471. doi: 10.1016/j.jallcom.2023.170471
|
[109] |
L. Zhou, F. Li, J.X. Liu, et al., High-entropy thermal barrier coating of rare-earth zirconate: A case study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying, J. Eur. Ceram. Soc., 40(2020), No. 15, p. 5731. doi: 10.1016/j.jeurceramsoc.2020.07.061
|
[110] |
J.T. Zhu, X.Y. Meng, P. Zhang, et al., Dual-phase rare-earth-zirconate high-entropy ceramics with glass-like thermal conductivity, J. Eur. Ceram. Soc., 41(2021), No. 4, p. 2861. doi: 10.1016/j.jeurceramsoc.2020.11.047
|
[111] |
W. Fan, Y. Bai, Y.F. Liu, et al., Principal element design of pyrochlore-fluorite dual-phase medium- and high-entropy ceramics, J. Mater. Sci. Technol., 107(2022), p. 149. doi: 10.1016/j.jmst.2021.08.018
|
[112] |
H.L. Liu, S. Pang, C.Q. Liu, Y.T. Wu, and G.J. Zhang, High-entropy yttrium pyrochlore ceramics with glass-like thermal conductivity for thermal barrier coating application, J. Am. Ceram. Soc., 105(2022), No. 10, p. 6437. doi: 10.1111/jace.18588
|
[113] |
Y.L. Wang, G.Q. Lin, L.X. Yang, et al., Preparation and thermophysical properties of a novel dual-phase and single-phase rare-earth-zirconate high-entropy ceramics, J. Alloys Compd., 938(2023), art. No. 168551. doi: 10.1016/j.jallcom.2022.168551
|
[114] |
D.B. Liu, B.L. Shi, L.Y. Geng, Y.G. Wang, B.S. Xu, and Y.F. Chen, High-entropy rare-earth zirconate ceramics with low thermal conductivity for advanced thermal-barrier coatings, J. Adv. Ceram., 11(2022), No. 6, p. 961. doi: 10.1007/s40145-022-0589-z
|
[115] |
Z.T. Zhao, R.F. Guo, H.R. Mao, and P. Shen, Effect of components on the microstructures and properties of rare-earth zirconate ceramics prepared by ultrafast high-throughput sintering, J. Eur. Ceram. Soc., 41(2021), No. 11, p. 5768. doi: 10.1016/j.jeurceramsoc.2021.04.053
|
[116] |
K.B. Zhang, W.W. Li, J.J. Zeng, et al., Preparation of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy transparent ceramic using combustion synthesized nanopowder, J. Alloys Compd., 817(2020), art. No. 153328. doi: 10.1016/j.jallcom.2019.153328
|
[117] |
S.X. Deng, G. He, Z.C. Yang, J.X. Wang, J.T. Li, and L. Jiang, Calcium–magnesium–alumina–silicate (CMAS) resistant high entropy ceramic (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 for thermal barrier coatings, J. Mater. Sci. Technol., 107(2022), p. 259. doi: 10.1016/j.jmst.2021.07.053
|
[118] |
Y.H. Zhang, M. Xie, Z.G. Wang, et al., Exploring the increasing behavior of thermal conductivity for high-entropy zirconates at high temperatures, Scripta Mater., 228(2023), art. No. 115328. doi: 10.1016/j.scriptamat.2023.115328
|
[119] |
Y.R. Li, Q. Wu, M.L. Lai, et al., Influence of chemical disorder on mechanical and thermal properties of multi-component rare earth zirconate pyrochlores (nRE1/ n)2Zr2O7, J. Appl. Phys., 132(2022), No. 7, art. No. 075108. doi: 10.1063/5.0099786
|
[120] |
Y. Fan, Q. Wu, Y. Yao, J.M. Wang, J.L. Zhao, and B. Liu, Temperature effect on mechanical and thermal properties of multicomponent rare-earth zirconate pyrochlores, J. Am. Ceram. Soc., 106(2023), No. 2, p. 1500. doi: 10.1111/jace.18816
|
[121] |
T. Li, Z. Ma, L. Liu, and S.Z. Zhu, Thermal properties of Sm2Zr2O7–NiCr2O4 composites, Ceram. Int., 40(2014), No. 7, p. 11423. doi: 10.1016/j.ceramint.2014.03.093
|
[122] |
J. Yang, C.L. Wan, M. Zhao, M. Shahid, and W. Pan, Effective blocking of radiative thermal conductivity in La2Zr2O7/LaPO4 composites for high temperature thermal insulation applications, J. Eur. Ceram. Soc., 36(2016), No. 15, p. 3809. doi: 10.1016/j.jeurceramsoc.2016.03.010
|
[123] |
A. Qayyum, S. Azam, A.H. Reshak, et al., Spin-dependent first-principles study on optoelectronic properties of neodymium zirconates pyrochlores Nd2Zr2O7 in Fd-3m and pmma phases, Molecules, 27(2022), No. 17, art. No. 5711. doi: 10.3390/molecules27175711
|
[124] |
L. Wang, J.I. Eldridge, and S.M. Guo, Thermal radiation properties of plasma-sprayed Gd2Zr2O7 thermal barrier coatings, Scripta Mater., 69(2013), No. 9, p. 674. doi: 10.1016/j.scriptamat.2013.07.026
|
[125] |
D.Y. Wang, L. Liu, Y.B. Liu, T. Li, Z. Ma, and H.X. Wu, Heat insulating capacity of Sm2Zr2O7 coating added with high absorptivity solids, Ceram. Int., 43(2017), No. 2, p. 2884. doi: 10.1016/j.ceramint.2016.11.068
|
[126] |
Y.F. Wang and P. Xiao, The phase stability and toughening effect of 3Y-TZP dispersed in the lanthanum zirconate ceramics, Mater. Sci. Eng. A, 604(2014), p. 34. doi: 10.1016/j.msea.2014.03.010
|
[127] |
X.H. Zhong, H.Y. Zhao, C.G. Liu, et al., Improvement in thermal shock resistance of gadolinium zirconate coating by addition of nanostructured yttria partially-stabilized zirconia, Ceram. Int., 41(2015), No. 6, p. 7318. doi: 10.1016/j.ceramint.2015.02.027
|
[128] |
M.P. Schmitt, J.L. Stokes, A.K. Rai, A.J. Schwartz, and D.E. Wolfe, Durable aluminate toughened zirconate composite thermal barrier coating (TBC) materials for high temperature operation, J. Am. Ceram. Soc., 102(2019), No. 8, p. 4781. doi: 10.1111/jace.16317
|
[129] |
X.W. Luo, S. Huang, C.H. Xu, S.E. Hou, and H.Y. Jin, Rare-earth high-entropy aluminate-toughened-zirconate dual-phase composite ceramics for advanced thermal barrier coatings, Ceram. Int., 49(2023), No. 1, p. 766. doi: 10.1016/j.ceramint.2022.09.048
|
[130] |
Y.C. Yu, E.P. Godbole, J. Berrios, N. Hewage, and D.L. Poerschke, Slow sintering in garnet-containing Y and Gd zirconate–aluminate mixtures for thermal barrier coatings, J. Am. Ceram. Soc., 106(2023), No. 8, p. 4519. doi: 10.1111/jace.19121
|
[131] |
P. Carpio, M.D. Salvador, A. Borrell, and E. Sánchez, Thermal behaviour of multilayer and functionally-graded YSZ/Gd2Zr2O7 coatings, Ceram. Int., 43(2017), No. 5, p. 4048. doi: 10.1016/j.ceramint.2016.11.178
|
[132] |
A.K. Rai, M.P. Schmitt, M.R. Dorfman, D.M. Zhu, and D.E. Wolfe, Comparison of single-phase and two-phase composite thermal barrier coatings with equal total rare-earth content, J. Therm. Spray Technol., 27(2018), No. 4, p. 556. doi: 10.1007/s11666-018-0713-3
|
[133] |
G. Jin, Y.C. Fang, X.F. Cui, et al., Effect of YSZ fibers and carbon nanotubes on bonding strength and thermal cycling lifetime of YSZ–La2Zr2O7 thermal barrier coatings, Surf. Coat. Technol., 397(2020), art. No. 125986. doi: 10.1016/j.surfcoat.2020.125986
|
[134] |
Y. Liu, K.Y. Chen, A. Kumar, and P. Patnaik, Principles of machine learning and its application to thermal barrier coatings, Coatings, 13(2023), No. 7, art. No. 1140. doi: 10.3390/coatings13071140
|
[135] |
D.D. Ye, W.Z. Wang, Z. Xu, C.D. Yin, H.T. Zhou, and Y.J. Li, Prediction of thermal barrier coatings microstructural features based on support vector machine optimized by cuckoo search algorithm, Coatings, 10(2020), No. 7, art. No. 704. doi: 10.3390/coatings10070704
|
[136] |
H. Zhu, D.P. Li, M. Yang, and D.D. Ye, Prediction of microstructure and mechanical properties of atmospheric plasma-sprayed 8YSZ thermal barrier coatings using hybrid machine learning approaches, Coatings, 13(2023), No. 3, art. No. 602. doi: 10.3390/coatings13030602
|