Zijian Peng, Yuhao Wang, Shuqi Wang, Junteng Yao, Qingyuan Zhao, Enyu Xie, Guoliang Chen, Zhigang Wang, Zhanguo Liu, Yaming Wang, and Jiahu Ouyang, Improvement strategy on thermophysical properties of A2B2O7-type rare earth zirconates for thermal barrier coatings applications: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 1147-1165. https://doi.org/10.1007/s12613-024-2853-4
Cite this article as:
Zijian Peng, Yuhao Wang, Shuqi Wang, Junteng Yao, Qingyuan Zhao, Enyu Xie, Guoliang Chen, Zhigang Wang, Zhanguo Liu, Yaming Wang, and Jiahu Ouyang, Improvement strategy on thermophysical properties of A2B2O7-type rare earth zirconates for thermal barrier coatings applications: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 1147-1165. https://doi.org/10.1007/s12613-024-2853-4
Invited Review

Improvement strategy on thermophysical properties of A2B2O7-type rare earth zirconates for thermal barrier coatings applications: A review

+ Author Affiliations
  • Corresponding author:

    Jiahu Ouyang    E-mail: ouyangjh@hit.edu.cn

  • Received: 16 October 2023Revised: 16 January 2024Accepted: 14 February 2024Available online: 19 February 2024
  • The A2B2O7-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating (TBC) materials because of their low sintering rate, improved phase stability, and reduced thermal conductivity in contrast with the currently used yttria-partially stabilized zirconia (YSZ) in high operating temperature environments. This review summarizes the recent progress on rare earth zirconates for TBCs that insulate high-temperature gas from hot-section components in gas turbines. Based on the first principles, molecular dynamics, and new data-driven calculation approaches, doping and high-entropy strategies have now been adopted in advanced TBC materials design. In this paper, the solid-state heat transfer mechanism of TBCs is explained from two aspects, including heat conduction over the full operating temperature range and thermal radiation at medium and high temperature. This paper also provides new insights into design considerations of adaptive TBC materials, and the challenges and potential breakthroughs are further highlighted for extreme environmental applications. Strategies for improving thermophysical performance are proposed in two approaches: defect engineering and material compositing.
  • loading
  • [1]
    H.F. Chen, C. Zhang, Y.C. Liu, et al., Recent progress in thermal/environmental barrier coatings and their corrosion resistance, Rare Met., 39(2020), No. 5, p. 498. doi: 10.1007/s12598-019-01307-1
    [2]
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications, Science, 296(2002), No. 5566, p. 280. doi: 10.1126/science.1068609
    [3]
    N.P. Padture, Advanced structural ceramics in aerospace propulsion, Nat. Mater., 15(2016), p. 804. doi: 10.1038/nmat4687
    [4]
    C.G. Levi, J.W. Hutchinson, M.H. Vidal-Sétif, and C.A. Johnson, Environmental degradation of thermal-barrier coatings by molten deposits, MRS Bull., 37(2012), No. 10, p. 932. doi: 10.1557/mrs.2012.230
    [5]
    D.R. Clarke and C.G. Levi, Materials design for the next generation thermal barrier coatings, Annu. Rev. Mater. Res., 33(2003), p. 383. doi: 10.1146/annurev.matsci.33.011403.113718
    [6]
    Z.G. Liu, W.H. Zhang, J.H. Ouyang, and Y. Zhou, Novel double-ceramic-layer (La0.8Eu0.2)2Zr2O7/YSZ thermal barrier coatings deposited by plasma spraying, Ceram. Int., 40(2014), No. 7, p. 11277. doi: 10.1016/j.ceramint.2014.03.159
    [7]
    Z.G. Liu, W.H. Zhang, J.H. Ouyang, and Y. Zhou, Novel thermal barrier coatings based on rare-earth zirconates/YSZ double-ceramic-layer system deposited by plasma spraying, J. Alloys Compd., 647(2015), p. 438. doi: 10.1016/j.jallcom.2015.05.189
    [8]
    U. Schulz, C. Leyens, K. Fritscher, et al., Some recent trends in research and technology of advanced thermal barrier coatings, Aerosp. Sci. Technol., 7(2003), No. 1, p. 73. doi: 10.1016/S1270-9638(02)00003-2
    [9]
    X.Q. Cao, R. Vassen, and D. Stoever, Ceramic materials for thermal barrier coatings, J. Eur. Ceram. Soc., 24(2004), No. 1, p. 1. doi: 10.1016/S0955-2219(03)00129-8
    [10]
    R. Vassen, X.Q. Cao, F. Tietz, D. Basu, and D. Stöver, Zirconates as new materials for thermal barrier coatings, J. Am. Ceram. Soc., 83(2000), No. 8, p. 2023. doi: 10.1111/j.1151-2916.2000.tb01506.x
    [11]
    M. Zhao, W. Pan, C.L. Wan, Z.X. Qu, Z. Li, and J. Yang, Defect engineering in development of low thermal conductivity materials: A review, J. Eur. Ceram. Soc., 37(2017), No. 1, p. 1. doi: 10.1016/j.jeurceramsoc.2016.07.036
    [12]
    J. Gild, M. Samiee, J.L. Braun, et al., High-entropy fluorite oxides, J. Eur. Ceram. Soc., 38(2018), No. 10, p. 3578. doi: 10.1016/j.jeurceramsoc.2018.04.010
    [13]
    W.J. Lackey, D.P. Stinton, G.A. Cerny, A.C. Schaffhauser, and L.L. Fehrenbacher, Ceramic coatings for advanced heat engines-A review and projection, Adv. Ceram. Mater., 2(1987), No. 1, p. 24. doi: 10.1111/j.1551-2916.1987.tb00048.x
    [14]
    C.H. Xu, H.Y. Jin, Q.F. Zhang, et al., A novel Co-ions complexation method to synthesize pyrochlore La2Zr2O7, J. Eur. Ceram. Soc., 37(2017), No. 8, p. 2871. doi: 10.1016/j.jeurceramsoc.2017.02.045
    [15]
    H.S. Zhang, Q. Xu, F.C. Wang, L. Liu, Y. Wei, and X.G. Chen, Preparation and thermophysical properties of (Sm0.5La0.5)2Zr2O7 and (Sm0.5La0.5)2(Zr0.8Ce0.2)2O7 ceramics for thermal barrier coatings, J. Alloys Compd., 475(2009), No. 1-2, p. 624. doi: 10.1016/j.jallcom.2008.07.068
    [16]
    N.P. Padture and P.G. Klemens, Low thermal conductivity in garnets, J. Am. Ceram. Soc., 80(1997), No. 4, p. 1018. doi: 10.1111/j.1151-2916.1997.tb02937.x
    [17]
    C.J. Friedrich, R. Gadow, and M.H. Lischka, Lanthanum hexaaluminate thermal barrier coatings, [in] 25th Annual Conference on Composites , Advanced Ceramics , Materials , and Structures : B : Ceramic Engineering and Science Proceedings, Florida, 2001, p. 375.
    [18]
    G.W. Schafer and R. Gadow, Lanthane aluminate thermal barrier coating, [in] 23nd Annual Conference on Composites , Advanced Ceramics , Materials , and Structures B : Ceramic Engineering and Science Proceedings, Hoboken, 1999, p. 291.
    [19]
    L. Chen, M.Y. Hu, P. Wu, and J. Feng, Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics, J. Am. Ceram. Soc., 102(2019), No. 8, p. 4809. doi: 10.1111/jace.16328
    [20]
    L. Chen, P. Song, and J. Feng, Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics, Scripta Mater., 152(2018), p. 117. doi: 10.1016/j.scriptamat.2018.03.042
    [21]
    J. Yang, W. Pan, Y. Han, M. Zhao, M.Z. Huang, and C.L. Wan, Mechanical properties, oxygen barrier property, and chemical stability of RE3NbO7 for thermal barrier coating, J. Am. Ceram. Soc., 103(2020), No. 4, p. 2302. doi: 10.1111/jace.16952
    [22]
    D.D. Shi, Z.B. Cao, Y.H. Huang, et al., Highly efficient thermal insulation in crystalline weberites RE3NbO7 (RE = La, Nd, Sm, Eu, Gd) with glass-like thermal conductivity, Ceram. Int., 48(2022), No. 2, p. 2686. doi: 10.1016/j.ceramint.2021.10.053
    [23]
    P.E.D. Morgan and D.B. Marshall, Ceramic composites of monazite and alumina, J. Am. Ceram. Soc., 78(1995), No. 6, p. 1553. doi: 10.1111/j.1151-2916.1995.tb08851.x
    [24]
    R. Vassen, G. Kerkhoff, and D. Stöver, Development of a micromechanical life prediction model for plasma sprayed thermal barrier coatings, Mater. Sci. Eng. A, 303(2001), No. 1-2, p. 100. doi: 10.1016/S0921-5093(00)01853-0
    [25]
    S. Akrami, P. Edalati, M. Fuji, and K. Edalati, High-entropy ceramics: Review of principles, production and applications, Mater. Sci. Eng. R Rep., 146(2021), art. No. 100644. doi: 10.1016/j.mser.2021.100644
    [26]
    R.Z. Zhang and M.J. Reece, Review of high entropy ceramics: Design, synthesis, structure and properties, J. Mater. Chem. A, 7(2019), No. 39, p. 22148. doi: 10.1039/C9TA05698J
    [27]
    A.J. Wright and J. Luo, A step forward from high-entropy ceramics to compositionally complex ceramics: A new perspective, J. Mater. Sci., 55(2020), No. 23, p. 9812. doi: 10.1007/s10853-020-04583-w
    [28]
    A.J. Wright, Q.Y. Wang, C.Z. Hu, Y.T. Yeh, R.K. Chen, and J. Luo, Single-phase duodenary high-entropy fluorite/pyrochlore oxides with an order-disorder transition, Acta Mater., 211(2021), art. No. 116858. doi: 10.1016/j.actamat.2021.116858
    [29]
    Z.F. Zhao, H.M. Xiang, F.Z. Dai, Z.J. Peng, and Y.C. Zhou, (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: A novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate, J. Mater. Sci. Technol., 35(2019), No. 11, p. 2647. doi: 10.1016/j.jmst.2019.05.054
    [30]
    S. Divilov, H. Eckert, D. Hicks, et al., Disordered enthalpy-entropy descriptor for high-entropy ceramics discovery, Nature, 625(2024), No. 7993, p. 66. doi: 10.1038/s41586-023-06786-y
    [31]
    G. Grimvall, Thermophysical Properties of Materias, Elsevier, Amsterdam, 1999.
    [32]
    W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, John Wiley & Sons, New York, 1976.
    [33]
    M.G. Holland, Analysis of lattice thermal conductivity, Phys. Rev., 132(1963), No. 6, p. 2461. doi: 10.1103/PhysRev.132.2461
    [34]
    B. Abeles, Lattice thermal conductivity of disordered semiconductor alloys at high temperatures, Phys. Rev., 131(1963), No. 5, p. 1906. doi: 10.1103/PhysRev.131.1906
    [35]
    P.G. Klemens, Thermal resistance due to point defects at high temperatures, Phys. Rev., 119(1960), No. 2, p. 507. doi: 10.1103/PhysRev.119.507
    [36]
    J. Callaway and H.C. von Baeyer, Effect of point imperfections on lattice thermal conductivity, Phys. Rev., 120(1960), No. 4, p. 1149. doi: 10.1103/PhysRev.120.1149
    [37]
    X.D. He, Y.B. Li, L.D. Wang, Y. Sun, and S. Zhang, High emissivity coatings for high temperature application: Progress and prospect, Thin Solid Films, 517(2009), No. 17, p. 5120. doi: 10.1016/j.tsf.2009.03.175
    [38]
    D.L. Zhao, A. Aili, Y. Zhai, et al., Radiative sky cooling: Fundamental principles, materials, and applications, Appl. Phys. Rev., 6(2019), No. 2, art. No. 021306. doi: 10.1063/1.5087281
    [39]
    B. Zhao, M.K. Hu, X.Z. Ao, N. Chen, and G. Pei, Radiative cooling: A review of fundamentals, materials, applications, and prospects, Appl. Energy, 236(2019), p. 489. doi: 10.1016/j.apenergy.2018.12.018
    [40]
    H.Z. Liu, J.H. Ouyang, Z.G. Liu, and Y.M. Wang, Thermo-optical properties of LaMAl11O19 (M=Mg, Mn, Fe) hexaaluminates for high-temperature thermal protection applications, J. Am. Ceram. Soc., 94(2011), No. 10, p. 3195. doi: 10.1111/j.1551-2916.2011.04761.x
    [41]
    G.L. Chen, H.Y. Fu, Y.C. Zou, et al., A promising radiation thermal protection coating based on lamellar porous Ca–Cr co-doped Y3NbO7 ceramic, Adv. Funct. Mater., 33(2023), No. 47, art. No. 2305650. doi: 10.1002/adfm.202305650
    [42]
    S.M. Wang, F.H. Kuang, Q.Z. Yan, C.C. Ge, and L.H. Qi, Crystallization and infrared radiation properties of iron ion doped cordierite glass-ceramics, J. Alloys Compd., 509(2011), No. 6, p. 2819. doi: 10.1016/j.jallcom.2010.11.126
    [43]
    K. Krieble, T. Schaeffer, J.A. Paulsen, A.P. Ring, C.C.H. Lo, and J.E. Snyder, Mössbauer spectroscopy investigation of Mn-substituted Co–ferrite (CoMn xFe2– xO4), J. Appl. Phys., 97(2005), No. 10, art. No. 10F101. doi: 10.1063/1.1846271
    [44]
    M.A. Subramanian, G. Aravamudan, and G.V.S. Rao, Oxide pyrochlores–A review, Prog. Solid State Chem., 15(1983), No. 2, p. 55. doi: 10.1016/0079-6786(83)90001-8
    [45]
    Z.G. Liu, J.H. Ouyang, and Y. Zhou, Preparation and thermophysical properties of (Nd xGd1− x)2Zr2O7 ceramics, J. Mater. Sci., 43(2008), No. 10, p. 3596. doi: 10.1007/s10853-008-2570-9
    [46]
    Z.G. Liu, J.H. Ouyang, and Y. Zhou, Structural evolution and thermophysical properties of (Sm xGd1– x)2Zr2O7 (0 ≤ x ≤ 1.0) ceramics, J. Alloys Compd., 472(2009), No. 1-2, p. 319. doi: 10.1016/j.jallcom.2008.04.042
    [47]
    Z.G. Liu, J.H. Ouyang, Y. Zhou, J. Li, and X.L. Xia, Influence of ytterbium- and samarium-oxides codoping on structure and thermal conductivity of zirconate ceramics, J. Eur. Ceram. Soc., 29(2009), No. 4, p. 647. doi: 10.1016/j.jeurceramsoc.2008.07.033
    [48]
    Z.G. Liu, J.H. Ouyang, Y. Zhou, J. Li, and X.L. Xia, Densification, structure, and thermophysical properties of ytterbium–gadolinium zirconate ceramics, Int. J. Appl. Ceram. Technol., 6(2009), No. 4, p. 485. doi: 10.1111/j.1744-7402.2008.02289.x
    [49]
    C.L. Wan, W. Zhang, Y.F. Wang, et al., Glass-like thermal conductivity in ytterbium-doped lanthanum zirconate pyrochlore, Acta Mater., 58(2010), No. 18, p. 6166. doi: 10.1016/j.actamat.2010.07.035
    [50]
    C.L. Wan, Z.X. Qu, A.B. Du, and W. Pan, Order-disorder transition and unconventional thermal conductivities of the (Sm1− xYb x)2Zr2O7 series, J. Am. Ceram. Soc., 94(2011), No. 2, p. 592. doi: 10.1111/j.1551-2916.2010.04113.x
    [51]
    X.R. Ren, C.L. Wan, M. Zhao, J. Yang, and W. Pan, Mechanical and thermal properties of fine-grained quasi-eutectoid (La1– xYb x)2Zr2O7 ceramics, J. Eur. Ceram. Soc., 35(2015), No. 11, p. 3145. doi: 10.1016/j.jeurceramsoc.2015.04.024
    [52]
    Y. Wu, L. Zheng, W.T. He, J. He, and H.B. Guo, Effects of Yb3+ doping on phase structure, thermal conductivity and fracture toughness of (Nd1– xYb x)2Zr2O7, Ceram. Int., 45(2019), No. 3, p. 3133. doi: 10.1016/j.ceramint.2018.10.213
    [53]
    H.S. Zhang, K. Sun, Q. Xu, F.C. Wang, and L. Liu, Preparation and thermal conductivity of Sm2(Zr0.6Ce0.4)2O7 ceramic, J. Mater. Eng. Perform., 18(2009), No. 8, p. 1140. doi: 10.1007/s11665-008-9346-x
    [54]
    J. Yang, M. Zhao, L. Zhang, Z.Y. Wang, and W. Pan, Pronounced enhancement of thermal expansion coefficients of rare-earth zirconate by cerium doping, Scripta Mater., 153(2018), p. 1. doi: 10.1016/j.scriptamat.2018.04.031
    [55]
    Q.B. Fan, F. Zhang, F.C. Wang, and L. Wang, Molecular dynamics calculation of thermal expansion coefficient of a series of rare-earth zirconates, Comput. Mater. Sci., 46(2009), No. 3, p. 716. doi: 10.1016/j.commatsci.2009.02.033
    [56]
    H.M. Zhou and D.Q. Yi, Effect of rare earth doping on thermo-physical properties of lanthanum zirconate ceramic for thermal barrier coatings, J. Rare Earths, 26(2008), No. 6, p. 770. doi: 10.1016/S1002-0721(09)60002-8
    [57]
    J. Wu, X.Z. Wei, N.P. Padture, et al., Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications, J. Am. Ceram. Soc., 85(2002), No. 12, p. 3031. doi: 10.1111/j.1151-2916.2002.tb00574.x
    [58]
    Q. Xu, W. Pan, J.D. Wang, et al., Preparation and thermophysical properties of Dy2Zr2O7 ceramic for thermal barrier coatings, Mater. Lett., 59(2005), No. 22, p. 2804. doi: 10.1016/j.matlet.2005.03.061
    [59]
    Q. Xu, W. Pan, J.D. Wang, et al., Rare-earth zirconate ceramics with fluorite structure for thermal barrier coatings, J. Am. Ceram. Soc., 89(2006), No. 1, p. 340. doi: 10.1111/j.1551-2916.2005.00667.x
    [60]
    J. Feng, B. Xiao, R. Zhou, and W. Pan, Thermal conductivity of rare earth zirconate pyrochlore from first principles, Scr. Mater., 68(2013), No. 9, p. 727. doi: 10.1016/j.scriptamat.2013.01.010
    [61]
    J. Yang, M. Shahid, M. Zhao, J. Feng, C.L. Wan, and W. Pan, Physical properties of La2B2O7 (B = Zr, Sn, Hf and Ge) pyrochlore: First-principles calculations, J. Alloys Compd., 663(2016), p. 834. doi: 10.1016/j.jallcom.2015.12.189
    [62]
    G.Q. Lan, B. Ouyang, Y.S. Xu, J. Song, and Y. Jiang, Predictions of thermal expansion coefficients of rare-earth zirconate pyrochlores: A quasi-harmonic approximation based on stable phonon modes, J. Appl. Phys., 119(2016), No. 23, art. No. 235103. doi: 10.1063/1.4954280
    [63]
    X.Q. Wang, X. Bai, W. Xiao, et al., Calculation of thermal expansion coefficient of rare earth zirconate system at high temperature by first principles, Materials, 15(2022), No. 6, art. No. 2264. doi: 10.3390/ma15062264
    [64]
    Q. Chen, W. Song, Y. Xie, Z.X. Yan, J. Xu, and F. Gao, Thermal expansion coefficient of nonstoichiometric gadolinium zirconate: First-principles calculations and experimental study, J. Phys. Chem. Solids, 178(2023), art. No. 111363. doi: 10.1016/j.jpcs.2023.111363
    [65]
    A. Joulia, M. Vardelle, and S. Rossignol, Synthesis and thermal stability of Re2Zr2O7, (Re = La, Gd) and La2(Zr1– xCe x)2O7– δ compounds under reducing and oxidant atmospheres for thermal barrier coatings, J. Eur. Ceram. Soc., 33(2013), No. 13-14, p. 2633. doi: 10.1016/j.jeurceramsoc.2013.03.030
    [66]
    C. Kaliyaperumal, A. Sankarakumar, J. Palanisamy, and T. Paramasivam, Fluorite to pyrochlore phase transformation in nanocrystalline Nd2Zr2O7, Mater. Lett., 228(2018), p. 493. doi: 10.1016/j.matlet.2018.06.087
    [67]
    H.B. Zhao, C.G. Levi, and H.N.G. Wadley, Vapor deposited samarium zirconate thermal barrier coatings, Surf. Coat. Technol., 203(2009), No. 20-21, p. 3157. doi: 10.1016/j.surfcoat.2009.03.048
    [68]
    J.H. Yu, H.Y. Zhao, S.Y. Tao, X.M. Zhou, and C.X. Ding, Thermal conductivity of plasma sprayed Sm2Zr2O7 coatings, J. Eur. Ceram. Soc., 30(2010), No. 3, p. 799. doi: 10.1016/j.jeurceramsoc.2009.09.010
    [69]
    H.B. Zhao, M.R. Begley, A. Heuer, R. Sharghi-Moshtaghin, and H.N.G. Wadley, Reaction, transformation and delamination of samarium zirconate thermal barrier coatings, Surf. Coat. Technol., 205(2011), No. 19, p. 4355. doi: 10.1016/j.surfcoat.2011.03.028
    [70]
    S.T. Aruna, C. Sanjeeviraja, N. Balaji, and N.T. Manikandanath, Properties of plasma sprayed La2Zr2O7 coating fabricated from powder synthesized by a single-step solution combustion method, Surf. Coat. Technol., 219(2013), p. 131. doi: 10.1016/j.surfcoat.2013.01.016
    [71]
    C. Jiang, E.H. Jordan, A.B. Harris, M. Gell, and J. Roth, Double-layer gadolinium zirconate/yttria-stabilized zirconia thermal barrier coatings deposited by the solution precursor plasma spray process, J. Therm. Spray Technol., 24(2015), No. 6, p. 895. doi: 10.1007/s11666-015-0283-6
    [72]
    S. Mahade, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Thermal conductivity and thermal cyclic fatigue of multilayered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray, Surf. Coat. Technol., 283(2015), p. 329. doi: 10.1016/j.surfcoat.2015.11.009
    [73]
    M. Martena, D. Botto, P. Fino, S. Sabbadini, M.M. Gola, and C. Badini, Modelling of TBC system failure: Stress distribution as a function of TGO thickness and thermal expansion mismatch, Eng. Fail. Anal., 13(2006), No. 3, p. 409. doi: 10.1016/j.engfailanal.2004.12.027
    [74]
    H. Lehmann, D. Pitzer, G. Pracht, R. Vassen, and D. Stöver, Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system, J. Am. Ceram. Soc., 86(2003), No. 8, p. 1338. doi: 10.1111/j.1151-2916.2003.tb03473.x
    [75]
    Z.G. Liu, J.H. Ouyang, B.H. Wang, Y. Zhou, and J. Li, Preparation and thermophysical properties of Nd xZr1– xO2– x/2 (x = 0.1, 0.2, 0.3, 0.4, 0.5) ceramics, J. Alloys Compd., 466(2008), No. 1-2, p. 39. doi: 10.1016/j.jallcom.2007.11.147
    [76]
    Y.Q. Guo, W.T. He, and H.B. Guo, Thermo-physical and mechanical properties of Yb2O3 and Sc2O3 co-doped Gd2Zr2O7 ceramics, Ceram. Int., 46(2020), No. 11, p. 18888. doi: 10.1016/j.ceramint.2020.04.209
    [77]
    R.W. Yang, J. Xu, M.Y. Wei, et al., Rattler effect on the properties of multicomponent rare-earth-zirconate ceramics, Ceram. Int., 48(2022), No. 19, p. 28586. doi: 10.1016/j.ceramint.2022.06.172
    [78]
    M.Y. Li, C.C. Lin, Y.R. Niu, J.M. Zhang, Y. Zeng, and X.M. Song, Order–disorder transition and thermal conductivities of the (NdSmEuGd)(1– x)/2Dy2 xZr2O7 series, J. Materiomics, 9(2023), No. 1, p. 138. doi: 10.1016/j.jmat.2022.08.007
    [79]
    F.A. Zhao, H.Y. Xiao, Z.J. Liu, S.A. Li, and X.T. Zu, A DFT study of mechanical properties, thermal conductivity and electronic structures of Th-doped Gd2Zr2O7, Acta Mater., 121(2016), p. 299. doi: 10.1016/j.actamat.2016.09.018
    [80]
    G. Lan, P.F. Ou, C. Chen, and J. Song, A complete computational route to predict reduction of thermal conductivities of complex oxide ceramics by doping: A case study of La2Zr2O7, J. Alloys Compd., 826(2020), art. No. 154224. doi: 10.1016/j.jallcom.2020.154224
    [81]
    Z.G. Liu, J.H. Ouyang, Y. Zhou, and X.L. Xia, Effect of Ti substitution for Zr on the thermal expansion property of fluorite-type Gd2Zr2O7, Mater. Des., 30(2009), No. 9, p. 3784. doi: 10.1016/j.matdes.2009.01.030
    [82]
    C.J. Wang, Y. Wang, X.Z. Fan, W.Z. Huang, B.L. Zou, and X.Q. Cao, Preparation and thermophysical properties of La2(Zr0.7Ce0.3)2O7 ceramic via sol–gel process, Surf. Coat. Technol., 212(2012), p. 88. doi: 10.1016/j.surfcoat.2012.09.026
    [83]
    Y.F. Wang, F. Yang, and P. Xiao, Role and determining factor of substitutional defects on thermal conductivity: A study of La2(Zr1– xB x)2O7 (B = Hf, Ce, 0 ≤ x ≤ 0.5) pyrochlore solid solutions, Acta Mater., 68(2014), p. 106. doi: 10.1016/j.actamat.2014.01.011
    [84]
    W. Ma, X.Y. Li, Y.C. Yin, et al., The mechanical and thermophysical properties of La2(Zr1− xCe x)2O7 ceramics, J. Alloys Compd., 660(2016), p. 85. doi: 10.1016/j.jallcom.2015.11.092
    [85]
    L. Liu, Q. Xu, F.C. Wang, and H.S. Zhang, Thermophysical properties of complex rare-earth zirconate ceramic for thermal barrier coatings, J. Am. Ceram. Soc., 91(2008), No. 7, p. 2398. doi: 10.1111/j.1551-2916.2008.02433.x
    [86]
    L. Liu, F.C. Wang, Z. Ma, Q. Xu, and S.G. Fang, Thermophysical properties of (Mg xLa0.5– xSm0.5)2(Zr0.7Ce0.3)2O7– x (x = 0, 0.1, 0.2, 0.3) ceramic for thermal barrier coatings, J. Am. Ceram. Soc., 94(2011), No. 3, p. 675. doi: 10.1111/j.1551-2916.2010.04385.x
    [87]
    M. Zhao, X.R. Ren, J. Yang, and W. Pan, Low thermal conductivity of rare-earth zirconate-stannate solid solutions (Yb2Zr2O7)1– x(Ln2Sn2O7) x (Ln = Nd, Sm), J. Am. Ceram. Soc., 99(2016), No. 1, p. 293. doi: 10.1111/jace.13979
    [88]
    Z.L. Xue, S.Q. Wu, L.H. Qian, E. Byon, and S.H. Zhang, Influence of Y2O3 and Ta2O5 co-doping on microstructure and thermal conductivity of Gd2Zr2O7 ceramics, J. Mater. Eng. Perform., 29(2020), No. 2, p. 1206. doi: 10.1007/s11665-020-04658-4
    [89]
    L. Guo, H.B. Guo, H. Peng, and S.K. Gong, Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9Yb0.1)2Zr2O7/YSZ thermal barrier coatings, J. Eur. Ceram. Soc., 34(2014), No. 5, p. 1255. doi: 10.1016/j.jeurceramsoc.2013.11.035
    [90]
    F.F. Zhou, L.P. Xu, C.M. Deng, et al., Nanomechanical characterization of nanostructured La2(Zr0.75Ce0.25)2O7 thermal barrier coatings by nanoindentation, Appl. Surf. Sci., 505(2020), art. No. 144585. doi: 10.1016/j.apsusc.2019.144585
    [91]
    D.Z. Wang, S.J. Dong, J.Y. Zeng, et al., Influence of doping Mg2+ or Ti4+ captions on the microstructures, thermal radiation and thermal cycling behavior of plasma-sprayed Gd2Zr2O7 coatings, Ceram. Int., 46(2020), No. 9, p. 13054. doi: 10.1016/j.ceramint.2020.02.076
    [92]
    Z.Y. Shen, G.X. Liu, R.D. Mu, L.M. He, Z.H. Xu, and J.W. Dai, Effects of Er stabilization on thermal property and failure behavior of Gd2Zr2O7 thermal barrier coatings, Corros. Sci., 185(2021), art. No. 109418. doi: 10.1016/j.corsci.2021.109418
    [93]
    D. Jiang, Y.F. Wang, S. Wang, R.J. Liu, and J. Han, Thermal conductivity of air plasma sprayed yttrium heavily-doped lanthanum zirconate thermal barrier coatings, Ceram. Int., 45(2019), No. 3, p. 3199. doi: 10.1016/j.ceramint.2018.10.222
    [94]
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. doi: 10.1016/j.msea.2003.10.257
    [95]
    J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
    [96]
    A.J. Wright, Q.Y. Wang, S.T. Ko, K.M. Chung, R.K. Chen, and J. Luo, Size disorder as a descriptor for predicting reduced thermal conductivity in medium- and high-entropy pyrochlore oxides, Scripta Mater., 181(2020), p. 76. doi: 10.1016/j.scriptamat.2020.02.011
    [97]
    Y.H. Wang, Y.J. Jin, T. Wei, et al., Size disorder: A descriptor for predicting the single- or dual-phase formation in multi-component rare earth zirconates, J. Alloys Compd., 918(2022), art. No. 165636. doi: 10.1016/j.jallcom.2022.165636
    [98]
    H.B. Yang, G.Q. Lin, H.P. Bu, et al., Single-phase forming ability of high-entropy ceramics from a size disorder perspective: A case study of (La0.2Eu0.2Gd0.2Y0.2Yb0.2)2Zr2O7, Ceram. Int., 48(2022), No. 5, p. 6956. doi: 10.1016/j.ceramint.2021.11.252
    [99]
    F. Li, L. Zhou, J.X. Liu, Y.C. Liang, and G.J. Zhang, High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials, J. Adv. Ceram., 8(2019), No. 4, p. 576. doi: 10.1007/s40145-019-0342-4
    [100]
    K. Ren, Q.K. Wang, G. Shao, X.F. Zhao, and Y.G. Wang, Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating, Scripta Mater., 178(2020), p. 382. doi: 10.1016/j.scriptamat.2019.12.006
    [101]
    K. Ren, Q.K. Wang, Y.J. Cao, G. Shao, and Y.G. Wang, Multicomponent rare-earth cerate and zirconocerate ceramics for thermal barrier coating materials, J. Eur. Ceram. Soc., 41(2021), No. 2, p. 1720. doi: 10.1016/j.jeurceramsoc.2020.10.005
    [102]
    J.J. He, G. He, J. Liu, and J.C. Tao, New class of high-entropy defect fluorite oxides RE2(Ce0.2Zr0.2Hf0.2Sn0.2Ti0.2)2O7 (RE = Y, Ho, Er, or Yb) as promising thermal barrier coatings, J. Eur. Ceram. Soc., 41(2021), No. 12, p. 6080. doi: 10.1016/j.jeurceramsoc.2021.05.044
    [103]
    D. Song, T. Song, U. Paik, et al., Glass-like thermal conductivity in mass-disordered high-entropy (Y, Yb)2(Ti, Zr, Hf)2O7 for thermal barrier material, Mater. Des., 210(2021), art. No. 110059. doi: 10.1016/j.matdes.2021.110059
    [104]
    Y.H. Zhang, M. Xie, Z.G. Wang, et al., Marked reduction in the thermal conductivity of (La0.2Gd0.2Y0.2Yb0.2Er0.2)2Zr2O7 high-entropy ceramics by substituting Zr4+ with Ti4+, Ceram. Int., 48(2022), No. 7, p. 9602. doi: 10.1016/j.ceramint.2021.12.158
    [105]
    X.W. Luo, L.R. Luo, X.F. Zhao, et al., Single-phase rare-earth high-entropy zirconates with superior thermal and mechanical properties, J. Eur. Ceram. Soc., 42(2022), No. 5, p. 2391. doi: 10.1016/j.jeurceramsoc.2021.12.080
    [106]
    X.W. Luo, R.Q. Huang, C.H. Xu, S. Huang, S.E. Hou, and H.Y. Jin, Designing high-entropy rare-earth zirconates with tunable thermophysical properties for thermal barrier coatings, J. Alloys Compd., 926(2022), art. No. 166714. doi: 10.1016/j.jallcom.2022.166714
    [107]
    R.X. Yan, W.P. Liang, Q. Miao, et al., Mechanical, thermal and CMAS resistance properties of high-entropy (Gd0.2Y0.2Er0.2Tm0.2Yb0.2)2Zr2O7 ceramics, Ceram. Int., 49(2023), No. 12, p. 20729. doi: 10.1016/j.ceramint.2023.03.205
    [108]
    Y.H. Zhang, M. Xie, Z.G. Wang, et al., Unveiling the underlying mechanism of unusual thermal conductivity behavior in multicomponent high-entropy (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1– xCe x)2O7 ceramics, J. Alloys Compd., 958(2023), art. No. 170471. doi: 10.1016/j.jallcom.2023.170471
    [109]
    L. Zhou, F. Li, J.X. Liu, et al., High-entropy thermal barrier coating of rare-earth zirconate: A case study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying, J. Eur. Ceram. Soc., 40(2020), No. 15, p. 5731. doi: 10.1016/j.jeurceramsoc.2020.07.061
    [110]
    J.T. Zhu, X.Y. Meng, P. Zhang, et al., Dual-phase rare-earth-zirconate high-entropy ceramics with glass-like thermal conductivity, J. Eur. Ceram. Soc., 41(2021), No. 4, p. 2861. doi: 10.1016/j.jeurceramsoc.2020.11.047
    [111]
    W. Fan, Y. Bai, Y.F. Liu, et al., Principal element design of pyrochlore-fluorite dual-phase medium- and high-entropy ceramics, J. Mater. Sci. Technol., 107(2022), p. 149. doi: 10.1016/j.jmst.2021.08.018
    [112]
    H.L. Liu, S. Pang, C.Q. Liu, Y.T. Wu, and G.J. Zhang, High-entropy yttrium pyrochlore ceramics with glass-like thermal conductivity for thermal barrier coating application, J. Am. Ceram. Soc., 105(2022), No. 10, p. 6437. doi: 10.1111/jace.18588
    [113]
    Y.L. Wang, G.Q. Lin, L.X. Yang, et al., Preparation and thermophysical properties of a novel dual-phase and single-phase rare-earth-zirconate high-entropy ceramics, J. Alloys Compd., 938(2023), art. No. 168551. doi: 10.1016/j.jallcom.2022.168551
    [114]
    D.B. Liu, B.L. Shi, L.Y. Geng, Y.G. Wang, B.S. Xu, and Y.F. Chen, High-entropy rare-earth zirconate ceramics with low thermal conductivity for advanced thermal-barrier coatings, J. Adv. Ceram., 11(2022), No. 6, p. 961. doi: 10.1007/s40145-022-0589-z
    [115]
    Z.T. Zhao, R.F. Guo, H.R. Mao, and P. Shen, Effect of components on the microstructures and properties of rare-earth zirconate ceramics prepared by ultrafast high-throughput sintering, J. Eur. Ceram. Soc., 41(2021), No. 11, p. 5768. doi: 10.1016/j.jeurceramsoc.2021.04.053
    [116]
    K.B. Zhang, W.W. Li, J.J. Zeng, et al., Preparation of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy transparent ceramic using combustion synthesized nanopowder, J. Alloys Compd., 817(2020), art. No. 153328. doi: 10.1016/j.jallcom.2019.153328
    [117]
    S.X. Deng, G. He, Z.C. Yang, J.X. Wang, J.T. Li, and L. Jiang, Calcium–magnesium–alumina–silicate (CMAS) resistant high entropy ceramic (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 for thermal barrier coatings, J. Mater. Sci. Technol., 107(2022), p. 259. doi: 10.1016/j.jmst.2021.07.053
    [118]
    Y.H. Zhang, M. Xie, Z.G. Wang, et al., Exploring the increasing behavior of thermal conductivity for high-entropy zirconates at high temperatures, Scripta Mater., 228(2023), art. No. 115328. doi: 10.1016/j.scriptamat.2023.115328
    [119]
    Y.R. Li, Q. Wu, M.L. Lai, et al., Influence of chemical disorder on mechanical and thermal properties of multi-component rare earth zirconate pyrochlores (nRE1/ n)2Zr2O7, J. Appl. Phys., 132(2022), No. 7, art. No. 075108. doi: 10.1063/5.0099786
    [120]
    Y. Fan, Q. Wu, Y. Yao, J.M. Wang, J.L. Zhao, and B. Liu, Temperature effect on mechanical and thermal properties of multicomponent rare-earth zirconate pyrochlores, J. Am. Ceram. Soc., 106(2023), No. 2, p. 1500. doi: 10.1111/jace.18816
    [121]
    T. Li, Z. Ma, L. Liu, and S.Z. Zhu, Thermal properties of Sm2Zr2O7–NiCr2O4 composites, Ceram. Int., 40(2014), No. 7, p. 11423. doi: 10.1016/j.ceramint.2014.03.093
    [122]
    J. Yang, C.L. Wan, M. Zhao, M. Shahid, and W. Pan, Effective blocking of radiative thermal conductivity in La2Zr2O7/LaPO4 composites for high temperature thermal insulation applications, J. Eur. Ceram. Soc., 36(2016), No. 15, p. 3809. doi: 10.1016/j.jeurceramsoc.2016.03.010
    [123]
    A. Qayyum, S. Azam, A.H. Reshak, et al., Spin-dependent first-principles study on optoelectronic properties of neodymium zirconates pyrochlores Nd2Zr2O7 in Fd-3m and pmma phases, Molecules, 27(2022), No. 17, art. No. 5711. doi: 10.3390/molecules27175711
    [124]
    L. Wang, J.I. Eldridge, and S.M. Guo, Thermal radiation properties of plasma-sprayed Gd2Zr2O7 thermal barrier coatings, Scripta Mater., 69(2013), No. 9, p. 674. doi: 10.1016/j.scriptamat.2013.07.026
    [125]
    D.Y. Wang, L. Liu, Y.B. Liu, T. Li, Z. Ma, and H.X. Wu, Heat insulating capacity of Sm2Zr2O7 coating added with high absorptivity solids, Ceram. Int., 43(2017), No. 2, p. 2884. doi: 10.1016/j.ceramint.2016.11.068
    [126]
    Y.F. Wang and P. Xiao, The phase stability and toughening effect of 3Y-TZP dispersed in the lanthanum zirconate ceramics, Mater. Sci. Eng. A, 604(2014), p. 34. doi: 10.1016/j.msea.2014.03.010
    [127]
    X.H. Zhong, H.Y. Zhao, C.G. Liu, et al., Improvement in thermal shock resistance of gadolinium zirconate coating by addition of nanostructured yttria partially-stabilized zirconia, Ceram. Int., 41(2015), No. 6, p. 7318. doi: 10.1016/j.ceramint.2015.02.027
    [128]
    M.P. Schmitt, J.L. Stokes, A.K. Rai, A.J. Schwartz, and D.E. Wolfe, Durable aluminate toughened zirconate composite thermal barrier coating (TBC) materials for high temperature operation, J. Am. Ceram. Soc., 102(2019), No. 8, p. 4781. doi: 10.1111/jace.16317
    [129]
    X.W. Luo, S. Huang, C.H. Xu, S.E. Hou, and H.Y. Jin, Rare-earth high-entropy aluminate-toughened-zirconate dual-phase composite ceramics for advanced thermal barrier coatings, Ceram. Int., 49(2023), No. 1, p. 766. doi: 10.1016/j.ceramint.2022.09.048
    [130]
    Y.C. Yu, E.P. Godbole, J. Berrios, N. Hewage, and D.L. Poerschke, Slow sintering in garnet-containing Y and Gd zirconate–aluminate mixtures for thermal barrier coatings, J. Am. Ceram. Soc., 106(2023), No. 8, p. 4519. doi: 10.1111/jace.19121
    [131]
    P. Carpio, M.D. Salvador, A. Borrell, and E. Sánchez, Thermal behaviour of multilayer and functionally-graded YSZ/Gd2Zr2O7 coatings, Ceram. Int., 43(2017), No. 5, p. 4048. doi: 10.1016/j.ceramint.2016.11.178
    [132]
    A.K. Rai, M.P. Schmitt, M.R. Dorfman, D.M. Zhu, and D.E. Wolfe, Comparison of single-phase and two-phase composite thermal barrier coatings with equal total rare-earth content, J. Therm. Spray Technol., 27(2018), No. 4, p. 556. doi: 10.1007/s11666-018-0713-3
    [133]
    G. Jin, Y.C. Fang, X.F. Cui, et al., Effect of YSZ fibers and carbon nanotubes on bonding strength and thermal cycling lifetime of YSZ–La2Zr2O7 thermal barrier coatings, Surf. Coat. Technol., 397(2020), art. No. 125986. doi: 10.1016/j.surfcoat.2020.125986
    [134]
    Y. Liu, K.Y. Chen, A. Kumar, and P. Patnaik, Principles of machine learning and its application to thermal barrier coatings, Coatings, 13(2023), No. 7, art. No. 1140. doi: 10.3390/coatings13071140
    [135]
    D.D. Ye, W.Z. Wang, Z. Xu, C.D. Yin, H.T. Zhou, and Y.J. Li, Prediction of thermal barrier coatings microstructural features based on support vector machine optimized by cuckoo search algorithm, Coatings, 10(2020), No. 7, art. No. 704. doi: 10.3390/coatings10070704
    [136]
    H. Zhu, D.P. Li, M. Yang, and D.D. Ye, Prediction of microstructure and mechanical properties of atmospheric plasma-sprayed 8YSZ thermal barrier coatings using hybrid machine learning approaches, Coatings, 13(2023), No. 3, art. No. 602. doi: 10.3390/coatings13030602
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(519) PDF Downloads(36) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return