Cite this article as: |
Hongming Mou, Ziyao Lu, Yuchen Pu, Zhaochu Luo, and Xiaozhong Zhang, Spin logic devices based on negative differential resistance-enhanced anomalous Hall effect, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1437-1448. https://doi.org/10.1007/s12613-024-2855-2 |
Zhaochu Luo E-mail: zhaochu.luo@pku.edu.cn
Xiaozhong Zhang E-mail: xzzhang@mail.tsinghua.edu.cn
[1] |
H. Li and Y.R. Chen, An overview of non-volatile memory technology and the implication for tools and architectures, [in] 2009 Design , Automation & Test in Europe Conference & Exhibition, Nice. 2009, p. 731.
|
[2] |
A. Hoffmann and S.D. Bader, Opportunities at the frontiers of spintronics, Phys. Rev. Applied, 4(2015), No. 4, art. No. 047001. doi: 10.1103/PhysRevApplied.4.047001
|
[3] |
B. Dieny, I.L. Prejbeanu, K. Garello, et al., Opportunities and challenges for spintronics in the microelectronics industry, Nat. Electron., 3(2020), No. 8, p. 446. doi: 10.1038/s41928-020-0461-5
|
[4] |
G. Finocchio, M. Di Ventra, K.Y. Camsari, K. Everschor-Sitte, P. Khalili Amiri, and Z.M. Zeng, The promise of spintronics for unconventional computing, J. Magn. Magn. Mater., 521(2021), art. No. 167506. doi: 10.1016/j.jmmm.2020.167506
|
[5] |
C.C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari, Bridging the processor-memory performance gap with 3D IC technology, IEEE Des. Test Comput., 22(2005), No. 6, p. 556. doi: 10.1109/MDT.2005.134
|
[6] |
X.X. Wu, J. Li, L.X. Zhang, E. Speight, R. Rajamony, and Y. Xie, Hybrid cache architecture with disparate memory technologies, ACM SIGARCH Comput. Archit. News, 37(2009), No. 3, p. 34. doi: 10.1145/1555815.1555761
|
[7] |
M. Horowitz, 1.1 Computing’s energy problem (and what we can do about it), [in] 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC ), San Francisco, 2014, p. 10.
|
[8] |
J. Backus, Can programming be liberated from the von Neumann style?, Commun. ACM, 21(1978), No. 8, p. 613. doi: 10.1145/359576.359579
|
[9] |
D.L. Fan, S. Angizi, and Z.Z. He, In-memory computing with spintronic devices, [in] 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI ), Bochum, 2017, p. 683.
|
[10] |
S.A. Wolf, D.D. Awschalom, R.A. Buhrman, et al., Spintronics: A spin-based electronics vision for the future, Science, 294(2001), No. 5546, p. 1488. doi: 10.1126/science.1065389
|
[11] |
A. Imre, G. Csaba, L. Ji, A. Orlov, G.H. Bernstein, and W. Porod, Majority logic gate for magnetic quantum-dot cellular automata, Science, 311(2006), No. 5758, p. 205. doi: 10.1126/science.1120506
|
[12] |
D. Bhowmik, L. You, and S. Salahuddin, Spin Hall effect clocking of nanomagnetic logic without a magnetic field, Nat. Nanotechnol., 9(2014), No. 1, p. 59. doi: 10.1038/nnano.2013.241
|
[13] |
M. Zabihi, Z.I. Chowdhury, Z.Y. Zhao, U.R. Karpuzcu, J.P. Wang, and S.S. Sapatnekar, In-memory processing on the spintronic CRAM: From hardware design to application mapping, IEEE Trans. Comput., 68(2019), No. 8, p. 1159. doi: 10.1109/TC.2018.2858251
|
[14] |
M.K. Zhao, C.H. Wan, X.M. Luo, et al., Field-free programmable spin logics based on spin Hall effect, Appl. Phys. Lett., 119(2021), No. 21, art. No. 212405. doi: 10.1063/5.0067879
|
[15] |
R.Z. Li, Y.C. Li, Y. Sheng, Z.A. Bekele, and K.Y. Wang, All-electrical multifunctional spin logics by adjusting the spin current density gradient in a single device, ACS Appl. Electron. Mater., 3(2021), No. 6, p. 2646. doi: 10.1021/acsaelm.1c00248
|
[16] |
X. Wang, C.H. Wan, W.J. Kong, et al., Field-free programmable spin logics via chirality-reversible spin–orbit torque switching, Adv. Mater., 30(2018), No. 31, art. No. e1801318. doi: 10.1002/adma.201801318
|
[17] |
C.H. Wan, X. Zhang, Z.H. Yuan, et al., Programmable spin logic based on spin Hall effect in a single device, Adv. Electron. Mater., 3(2017), No. 3, art. No. 1600282 doi: 10.1002/aelm.201600282
|
[18] |
X. Zhang, C.H. Wan, Z.H. Yuan, et al., Experimental demonstration of programmable multi-functional spin logic cell based on spin Hall effect, J. Magn. Magn. Mater., 428(2017), p. 401. doi: 10.1016/j.jmmm.2016.12.113
|
[19] |
N. Zhang, Y. Cao, Y.C. Li, et al., Complementary lateral-spin–orbit building blocks for programmable logic and In-memory computing, Adv. Electron. Mater., 6(2020), No. 8, art. No. 2000296. doi: 10.1002/aelm.202000296
|
[20] |
M.L. Li, C.X. Li, X.G. Xu, et al., An ultrathin flexible programmable spin logic device based on spin–orbit torque, Nano Lett., 23(2023), No. 9, p. 3818. doi: 10.1021/acs.nanolett.3c00231
|
[21] |
D. Chiba, S. Fukami, K. Shimamura, N. Ishiwata, K. Kobayashi, and T. Ono, Electrical control of the ferromagnetic phase transition in cobalt at room temperature, Nat. Mater., 10(2011), No. 11, p. 853. doi: 10.1038/nmat3130
|
[22] |
Y. Shiota, T. Nozaki, F. Bonell, S. Murakami, T. Shinjo, and Y. Suzuki, Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses, Nat. Mater., 11(2012), No. 1, p. 39. doi: 10.1038/nmat3172
|
[23] |
X.X. Zhang, L. Li, D. Weber, J. Goldberger, K.F. Mak, and J. Shan, Gate-tunable spin waves in antiferromagnetic atomic bilayers, Nat. Mater., 19(2020), No. 8, p. 838. doi: 10.1038/s41563-020-0713-9
|
[24] |
S. Zhang, Y.G. Zhao, P.S. Li, et al., Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 structure at room temperature, Phys. Rev. Lett., 108(2012), No. 13, art. No. 137203. doi: 10.1103/PhysRevLett.108.137203
|
[25] |
T. Wu, A. Bur, K. Wong, et al., Electrical control of reversible and permanent magnetization reorientation for magnetoelectric memory devices, Appl. Phys. Lett., 98(2011), No. 26, art. No. 262504. doi: 10.1063/1.3605571
|
[26] |
X.Z. Chen, S.Y. Shi, G.Y. Shi, et al., Observation of the antiferromagnetic spin Hall effect, Nat. Mater., 20(2021), No. 6, p. 800. doi: 10.1038/s41563-021-00946-z
|
[27] |
P. Borisov, A. Hochstrat, X. Chen, W. Kleemann, and C. Binek, Magnetoelectric Switching of Exchange Bias, Phys. Rev. Lett., 94(2005). No. 11, art. No. 117203.
|
[28] |
X. He, Y. Wang, N. Wu, et al., Robust isothermal electric control of exchange bias at room temperature, Nat. Mater., 9(2010), No. 7, p. 579. doi: 10.1038/nmat2785
|
[29] |
W. Echtenkamp and C. Binek, Electric control of exchange bias training, Phys. Rev. Lett., 111(2013), No. 18, art. No. 187204. doi: 10.1103/PhysRevLett.111.187204
|
[30] |
Y.Y. Wang, X. Zhou, C. Song, et al., Electrical control of the exchange spring in antiferromagnetic metals, Adv. Mater., 27(2015), No. 20, p. 3196. doi: 10.1002/adma.201405811
|
[31] |
J.T. Heron, J.L. Bosse, Q. He, et al., Deterministic switching of ferromagnetism at room temperature using an electric field, Nature, 516(2014), No. 7531, p. 370. doi: 10.1038/nature14004
|
[32] |
X. Han, Y.B. Fan, D. Wang, et al., Fully electrical controllable spin–orbit torque based half-adder, Appl. Phys. Lett., 122(2023), No. 5, art. No. 052404. doi: 10.1063/5.0130902
|
[33] |
B. Cui, C. Song, H.J. Mao, et al., Manipulation of electric field effect by orbital switch, Adv. Funct. Mater., 26(2016), No. 5, p. 753. doi: 10.1002/adfm.201504036
|
[34] |
M.K. Niranjan, C.G. Duan, S.S. Jaswal, and E.Y. Tsymbal, Electric field effect on magnetization at the Fe/MgO(001) interface, Appl. Phys. Lett., 96(2010), No. 22, art. No. 222504. doi: 10.1063/1.3443658
|
[35] |
U. Bauer, L.D. Yao, A.J. Tan, et al., Magneto-ionic control of interfacial magnetism, Nat. Mater., 14(2015), No. 2, p. 174. doi: 10.1038/nmat4134
|
[36] |
C. Bi, Y.H. Liu, T. Newhouse-Illige, et al., Reversible control of Co magnetism by voltage-induced oxidation, Phys. Rev. Lett., 113(2014), No. 26, art. No. 267202. doi: 10.1103/PhysRevLett.113.267202
|
[37] |
Z.Y. Ren, M.X. Wang, P.F. Liu, et al., Spin logical and memory device based on the nonvolatile ferroelectric control of the perpendicular magnetic anisotropy in PbZr0.2Ti0.8O3/Co/Pt heterostructure, Adv. Electron. Mater., 6(2020), No. 6, art. No. 2000102. doi: 10.1002/aelm.202000102
|
[38] |
S.H C. Baek, K.W. Park, D.S. Kil, et al., Complementary logic operation based on electric-field controlled spin–orbit torques, Nat. Electron., 1(2018), No. 7, p. 398. doi: 10.1038/s41928-018-0099-8
|
[39] |
Z.D. Zhang, Y.W. Zhang, R.S. Wang, L. Zeng, and R. Huang, Reconfigurable logic based on voltage-controlled magnetic tunnel junction (VC-MTJ) for stochastic computing, [in] 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT ), Qingdao, 2018, p. 1.
|
[40] |
S. Shreya, A. Jain, and B.K. Kaushik, Computing-in-memory architecture using energy-efficient multilevel voltage-controlled spin-orbit torque device, IEEE Trans. Electron Devices, 67(2020), No. 5, p. 1972. doi: 10.1109/TED.2020.2978085
|
[41] |
D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, and R.P. Cowburn, Magnetic domain-wall logic, Science, 309(2005), No. 5741, p. 1688. doi: 10.1126/science.1108813
|
[42] |
D.A. Allwood, G. Xiong, M.D. Cooke, et al., Submicrometer ferromagnetic NOT gate and shift register, Science, 296(2002), No. 5575, p. 2003. doi: 10.1126/science.1070595
|
[43] |
K.A. Omari and T.J. Hayward, Chirality-based vortex domain-wall logic gates, Phys. Rev. Applied, 2(2014), No. 4, art. No. 044001. doi: 10.1103/PhysRevApplied.2.044001
|
[44] |
Z.C. Luo, A. Hrabec, T.P. Dao, et al., Current-driven magnetic domain-wall logic, Nature, 579(2020), No. 7798, p. 214. doi: 10.1038/s41586-020-2061-y
|
[45] |
Z.R. Yan, Y.Z. Liu, Y. Guang, et al., Skyrmion-based programmable logic device with complete Boolean logic functions, Phys. Rev. Applied, 15(2021), No. 6, art. No. 064004. doi: 10.1103/PhysRevApplied.15.064004
|
[46] |
Z.Z. Zhang, K.L. Lin, Y. Zhang, et al., Magnon scattering modulated by omnidirectional hopfion motion in antiferromagnets for meta-learning, Sci. Adv., 9(2023), No. 6, art. No. eade7439. doi: 10.1126/sciadv.ade7439
|
[47] |
Z.C. Luo, Z.Y. Lu, C.Y. Xiong, et al., Reconfigurable magnetic logic combined with nonvolatile memory writing, Adv. Mater., 29(2017), No. 4, art. No. 1605027. doi: 10.1002/adma.201605027
|
[48] |
B. Avanic, G. Gonzalez, K. Premaratne, and A. Rodriguez, Negative resistance design for crystal oscillators, Int. J. Electron., 67(1989), No. 6, p. 869. doi: 10.1080/00207218908921137
|
[49] |
M. Son, J. Lee, J. Park, et al., Excellent selector characteristics of nanoscale VO2 for high-density bipolar ReRAM applications, IEEE Electron Device Lett., 32(2011), No. 11, p. 1579. doi: 10.1109/LED.2011.2163697
|
[50] |
J. Sakai, High-efficiency voltage oscillation in VO2 planer-type junctions with infinite negative differential resistance, J. Appl. Phys., 103(2008), No. 10, art. No. 103708. doi: 10.1063/1.2930959
|
[51] |
H.M. Mou, Z.C. Luo, and X.Z. Zhang, A magnetic-field-driven neuristor for spiking neural networks, Appl. Phys. Lett., 122(2023), No. 25, art. No. 250601. doi: 10.1063/5.0158341
|
[52] |
A.R. Bonnefoi, T.C. McGill, and R.D. Burnham, Resonant tunneling transistors with controllable negative differential resistances, IEEE Electron Device Lett., 6(1985), No. 12, p. 636. doi: 10.1109/EDL.1985.26258
|
[53] |
Z.Y. Lu, C.Y. Xiong, H.M. Mou, et al., Nonvolatile magnetic half adder combined with memory writing, Appl. Phys. Lett., 118(2021), No. 18, art. No. 182402. doi: 10.1063/5.0048448
|
[54] |
R. Singh, Z.C. Luo, Z.Y. Lu, A.S. Saleemi, C.Y. Xiong, and X.Z. Zhang, Thermal stability of NDR-assisted anomalous Hall effect based magnetic device, J. Appl. Phys., 125(2019), No. 20, art. No. 203901. doi: 10.1063/1.5088916
|
[55] |
Y.C. Pu, H.M. Mou, Z.Y. Lu, et al., Speed enhancement of magnetic logic-memory device by insulator-to-metal transition, Appl. Phys. Lett., 117(2020), No. 2, art. No. 022407. doi: 10.1063/5.0013301
|
[56] |
L.Q. Liu, C.F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, and R.A. Buhrman, Spin-torque switching with the giant spin Hall effect of tantalum, Science, 336(2012), No. 6081, p. 555. doi: 10.1126/science.1218197
|
[57] |
Y.C. Pu, Z.Y. Lu, H.M. Mou, X.X. Zhang, and X.Z. Zhang, Ultrafast and ultralow-power voltage-dominated magnetic logic, Adv. Intell. Syst., 4(2022), No. 5, art. No. 2100157. doi: 10.1002/aisy.202100157
|
[58] |
Z.X. Lu, Research on Magnetic Logic Devices Based on Magnetic Films with Perpendicular Magnetic Anisotropy [Dissertation], Tsinghua University, Beijing, 2022, p. 73.
|
[59] |
S. Garg and T.K. Gupta, FDSTDL: Low-power technique for FinFET domino circuits, Int. J. Circuit Theory Appl., 47(2019), No. 6, p. 917. doi: 10.1002/cta.2627
|
[60] |
Z.Y. Lu, H.M. Mou, Y.C. Pu, Y. Wen, X.X. Zhang, and X.Z. Zhang, Magnetic full adder based on negative differential resistance-enhanced anomalous Hall effect, IEEE Magn. Lett., 13(2022), art. No. 4502405. doi: 10.1109/LMAG.2022.3146132
|