Guonan Ma, Shize Zhu, Dong Wang, Peng Xue, Bolü Xiao, and Zongyi Ma, Effect of heat treatment on the microstructure, mechanical properties and fracture behaviors of ultra-high-strength SiC/Al–Zn–Mg–Cu composites, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2233-2243. https://doi.org/10.1007/s12613-024-2856-1
Cite this article as:
Guonan Ma, Shize Zhu, Dong Wang, Peng Xue, Bolü Xiao, and Zongyi Ma, Effect of heat treatment on the microstructure, mechanical properties and fracture behaviors of ultra-high-strength SiC/Al–Zn–Mg–Cu composites, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2233-2243. https://doi.org/10.1007/s12613-024-2856-1
Research Article

Effect of heat treatment on the microstructure, mechanical properties and fracture behaviors of ultra-high-strength SiC/Al–Zn–Mg–Cu composites

+ Author Affiliations
  • Corresponding authors:

    Dong Wang    E-mail: dongwang@imr.ac.cn

    Peng Xue    E-mail: pxue@imr.ac.cn

  • Received: 27 October 2023Revised: 16 January 2024Accepted: 22 February 2024Available online: 23 February 2024
  • A high-zinc composite, 12vol% SiC/Al–13.3 Zn–3.27 Mg–1.07Cu (wt%), with an ultra-high-strength of 781 MPa was successfully fabricated through a powder metallurgy method, followed by an extrusion process. The effects of solid-solution and aging heat treatments on the microstructure and mechanical properties of the composite were extensively investigated. Compared with a single-stage solid-solution treatment, a two-stage solid-solution treatment (470°C/1 h + 480°C/1 h) exhibited a more effective solid-solution strengthening owing to the higher degree of solid-solution and a more uniform microstructure. According to the aging hardness curves of the composite, the optimized aging parameter (100°C/22 h) was determined. Reducing the aging temperature and time resulted in finer and more uniform nanoscale precipitates but only yielded a marginal increase in tensile strength. The fractography analysis revealed that intergranular cracking and interface debonding were the main fracture mechanisms in the ultra-high-strength SiC/Al–Zn–Mg–Cu composites. Weak regions, such as the SiC/Al interface containing numerous compounds and the precipitate-free zones at the high-angle grain boundaries, were identified as significant factors limiting the strength enhancement of the composite. Interfacial compounds, including MgO, MgZn2, and Cu5Zn8, reduced the interfacial bonding strength, leading to interfacial debonding.
  • loading
  • [1]
    Y.Q. Zhao, T. Tian, H.L. Jia, et al., Effects of Mg/Zn ratio and pre-aging on microstructure and mechanical properties of Al–Mg–Zn–Cu alloys, J. Mater. Res. Technol., 27(2023), p. 1874. doi: 10.1016/j.jmrt.2023.09.319
    [2]
    M. Ao, Y.C. Ji, P. Yi, et al., Relationship between elements migration of α-AlFeMnSi phase and micro-galvanic corrosion sensitivity of Al–Zn–Mg alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 112. doi: 10.1007/s12613-022-2428-1
    [3]
    C.Y. Wen, J. Tang, W.T. Chen, et al., Deformation mechanisms and mechanical properties of the high-strength and ductile Al–Zn–Mg–Cu alloys processed by repetitive continuous extrusion forming process with different heat treatments, J. Alloys Compd., 965(2023), art. No. 171006. doi: 10.1016/j.jallcom.2023.171006
    [4]
    A. Ditta, L.J. Wei, Y.J. Xu, and S.J. Wu, Microstructural characteristics and properties of spray formed Zn-rich Al–Zn–Mg–Cu alloy under various aging conditions, Mater. Charact., 161(2020), art. No. 110133. doi: 10.1016/j.matchar.2020.110133
    [5]
    K. Wen, B.Q. Xiong, Y.A. Zhang, et al., Over-aging influenced matrix precipitate characteristics improve fatigue crack propagation in a high Zn-containing Al–Zn–Mg–Cu alloy, Mater. Sci. Eng. A, 716(2018), p. 42. doi: 10.1016/j.msea.2018.01.040
    [6]
    M.M. Sharma, M.F. Amateau, and T.J. Eden, Aging response of Al–Zn–Mg–Cu spray formed alloys and their metal matrix composites, Mater. Sci. Eng. A, 424(2006), No. 1-2, p. 87. doi: 10.1016/j.msea.2006.02.047
    [7]
    X.D. Wang, Q.L. Pan, L.L. Liu, et al., Characterization of hot extrusion and heat treatment on mechanical properties in a spray formed ultra-high strength Al–Zn–Mg–Cu alloy, Mater. Charact., 144(2018), p. 131. doi: 10.1016/j.matchar.2018.07.012
    [8]
    A. Sharma, M.C. Oh, J.T. Kim, A.K. Srivastava, and B. Ahn, Investigation of electrochemical corrosion behavior of additive manufactured Ti–6Al–4V alloy for medical implants in different electrolytes, J. Alloys Compd., 830(2020), art. No. 154620. doi: 10.1016/j.jallcom.2020.154620
    [9]
    X.N. Peng, H.Z. Guo, T. Wang, and Z.K. Yao, Effects of β treatments on microstructures and mechanical properties of TC4-DT titanium alloy, Mater. Sci. Eng. A, 533(2012), p. 55. doi: 10.1016/j.msea.2011.11.033
    [10]
    A. David, S.K. Gopal, P. Lakshmanan, and A.S. Chenbagam, Corrosion, mechanical and microstructural properties of aluminum 7075–carbon nanotube nanocomposites for robots in corrosive environments, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1140. doi: 10.1007/s12613-022-2592-3
    [11]
    X.L. Guo, Q. Guo, J.H. Nie, et al., Particle size effect on the interfacial properties of SiC particle-reinforced Al–Cu–Mg composites, Mater. Sci. Eng. A, 711(2018), p. 643. doi: 10.1016/j.msea.2017.11.068
    [12]
    S.Z. Zhu, G.N. Ma, D. Wang, B.L. Xiao, and Z.Y. Ma, Suppressed negative influence of natural aging in SiCp/6092Al composites, Mater. Sci. Eng. A, 767(2019), art. No. 138422. doi: 10.1016/j.msea.2019.138422
    [13]
    G.N. Ma, D. Wang, Z.Y. Liu, B.L. Xiao, and Z.Y. Ma, An investigation on particle weakening in T6-treated SiC/Al–Zn–Mg–Cu composites, Mater. Charact., 158(2019), art. No. 109966. doi: 10.1016/j.matchar.2019.109966
    [14]
    G.N. Ma, D. Wang, B.L. Xiao, and Z.Y. Ma, Effect of particle size on mechanical properties and fracture behaviors of age-hardening SiC/Al–Zn–Mg–Cu composites, Acta Metall. Sin. Engl. Lett., 34(2021), No. 10, p. 1447. doi: 10.1007/s40195-021-01254-w
    [15]
    S. Liu, Q. Yuan, Y.T. Sima, C.X. Liu, F. Han, and W.W. Qiao, Wear behavior of Zn–38Al–3.5Cu–1.2Mg/SiCp composite under different stabilization treatments, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1270. doi: 10.1007/s12613-020-2217-7
    [16]
    J.Y. Song, Q. Guo, Q.B. Ouyang, et al., Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al–Zn–Mg–Cu composites, Mater. Sci. Eng. A, 644(2015), No., p. 79.
    [17]
    Q. Liu, F. Ye, Y. Gao, S.C. Liu, H.X. Yang, and Z.Q. Zhou, Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties, J. Alloys Compd., 585(2014), p. 146. doi: 10.1016/j.jallcom.2013.09.140
    [18]
    A. Ghosh, M. Ghosh, and R. Kalsar, Influence of homogenisation time on evolution of eutectic phases, dispersoid behaviour and crystallographic texture for Al–Zn–Mg–Cu–Ag alloy, J. Alloys Compd., 802(2019), p. 276. doi: 10.1016/j.jallcom.2019.06.091
    [19]
    H.C. Li, F.Y. Cao, S. Guo, et al., Effects of Mg and Cu on microstructures and properties of spray-deposited Al–Zn–Mg–Cu alloys, J. Alloys Compd., 719(2017), p. 89. doi: 10.1016/j.jallcom.2017.05.101
    [20]
    W.H. Yuan, J. Zhang, C.C. Zhang, and Z.H. Chen, Processing of ultra-high strength SiCp/Al–Zn–Mg–Cu composites, J. Mater. Process. Technol., 209(2009), No. 7, p. 3251. doi: 10.1016/j.jmatprotec.2008.07.030
    [21]
    S. Gatea, H.G. Ou, and G. McCartney, Deformation and fracture characteristics of Al6092/SiC/17.5p metal matrix composite sheets due to heat treatments, Mater. Charact., 142(2018), p. 365. doi: 10.1016/j.matchar.2018.05.050
    [22]
    L. Chen, F.P. Yuan, P. Jiang, J.J. Xie, and X.L. Wu, Mechanical properties and deformation mechanism of Mg–Al–Zn alloy with gradient microstructure in grain size and orientation, [in] X.L. Wu and Y.T. Zhu, eds., Heterostructured Materials, Jenny Stanford Publishing, New York, 2021, p. 417.
    [23]
    A. Ureña, E.E. Martı́nez, P. Rodrigo, and L. Gil, Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites, Compos. Sci. Technol., 64(2004), No. 12, p. 1843. doi: 10.1016/j.compscitech.2004.01.010
    [24]
    G.E. Kiourtsidis, S.M. Skolianos, and G.A. Litsardakis, Aging response of aluminium alloy 2024/silicon carbide particles (SiCp) composites, Mater. Sci. Eng. A, 382(2004), No. 1-2, p. 351. doi: 10.1016/j.msea.2004.05.021
    [25]
    Z.P. Luo, Crystallography of SiC/MgAl2O4/Al interfaces in a pre-oxidized SiC reinforced SiC/Al composite, Acta Mater., 54(2006), No. 1, p. 47. doi: 10.1016/j.actamat.2005.08.022
    [26]
    B. Li, B.H. Luo, K.J. He, L.Z. Zeng, W.L. Fan, and Z.H. Bai, Effect of aging on interface characteristics of Al–Mg–Si/SiC composites, J. Alloys Compd., 649(2015), p. 495. doi: 10.1016/j.jallcom.2015.07.033
    [27]
    W.Y. Wang, Q.L. Pan, X.D. Wang, et al., Non-isothermal aging: A heat treatment method that simultaneously improves the mechanical properties and corrosion resistance of ultra-high strength Al–Zn–Mg–Cu alloy, J. Alloys Compd., 845(2020), art. No. 156286. doi: 10.1016/j.jallcom.2020.156286
    [28]
    X.B. Yang, J.H. Chen, J.Z. Liu, et al., Spherical constituent particles formed by a multistage solution treatment in Al–Zn–Mg–Cu alloys, Mater. Charact., 83(2013), p. 79. doi: 10.1016/j.matchar.2013.06.005
    [29]
    D.K. Xu, P.A. Rometsch, and N. Birbilis, Improved solution treatment for an as-rolled Al–Zn–Mg–Cu alloy. Part I. Characterisation of constituent particles and overheating, Mater. Sci. Eng. A, 534(2012), p. 234. doi: 10.1016/j.msea.2011.11.065
    [30]
    P. Dai, X. Luo, Y.Q. Yang, et al., Thermal stability analysis of a lightweight Al–Zn–Mg–Cu alloy by TEM and tensile tests, Mater. Charact., 153(2019), p. 271. doi: 10.1016/j.matchar.2019.05.018
    [31]
    S.H. Lee, J.G. Jung, S.I. Baik, et al., Effects of Ti addition on the microstructure and mechanical properties of Al–Zn–Mg–Cu–Zr alloy, Mater. Sci. Eng. A, 801(2021), art. No. 140437. doi: 10.1016/j.msea.2020.140437
    [32]
    D.M. Liu, B.Q. Xiong, F.G. Bian, et al., Quantitative study of nanoscale precipitates in Al–Zn–Mg–Cu alloys with different chemical compositions, Mater. Sci. Eng. A, 639(2015), p. 245. doi: 10.1016/j.msea.2015.04.104
    [33]
    Z. Zhang, Y.L. Deng, L.Y. Ye, et al., Influence of aging treatments on the strength and localized corrosion resistance of aged Al–Zn–Mg–Cu alloy, J. Alloys Compd., 846(2020), art. No. 156223. doi: 10.1016/j.jallcom.2020.156223
    [34]
    G.N. Ma, D. Wang, Z.Y. Liu, et al., Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al–Zn–Mg–Cu composites, Acta Metall. Sin., 55(2019), No. 10, p. 1319.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(987) PDF Downloads(41) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return