Cite this article as: |
Guonan Ma, Shize Zhu, Dong Wang, Peng Xue, Bolü Xiao, and Zongyi Ma, Effect of heat treatment on the microstructure, mechanical properties and fracture behaviors of ultra-high-strength SiC/Al–Zn–Mg–Cu composites, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2233-2243. https://doi.org/10.1007/s12613-024-2856-1 |
Dong Wang E-mail: dongwang@imr.ac.cn
Peng Xue E-mail: pxue@imr.ac.cn
[1] |
Y.Q. Zhao, T. Tian, H.L. Jia, et al., Effects of Mg/Zn ratio and pre-aging on microstructure and mechanical properties of Al–Mg–Zn–Cu alloys, J. Mater. Res. Technol., 27(2023), p. 1874. doi: 10.1016/j.jmrt.2023.09.319
|
[2] |
M. Ao, Y.C. Ji, P. Yi, et al., Relationship between elements migration of α-AlFeMnSi phase and micro-galvanic corrosion sensitivity of Al–Zn–Mg alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 112. doi: 10.1007/s12613-022-2428-1
|
[3] |
C.Y. Wen, J. Tang, W.T. Chen, et al., Deformation mechanisms and mechanical properties of the high-strength and ductile Al–Zn–Mg–Cu alloys processed by repetitive continuous extrusion forming process with different heat treatments, J. Alloys Compd., 965(2023), art. No. 171006. doi: 10.1016/j.jallcom.2023.171006
|
[4] |
A. Ditta, L.J. Wei, Y.J. Xu, and S.J. Wu, Microstructural characteristics and properties of spray formed Zn-rich Al–Zn–Mg–Cu alloy under various aging conditions, Mater. Charact., 161(2020), art. No. 110133. doi: 10.1016/j.matchar.2020.110133
|
[5] |
K. Wen, B.Q. Xiong, Y.A. Zhang, et al., Over-aging influenced matrix precipitate characteristics improve fatigue crack propagation in a high Zn-containing Al–Zn–Mg–Cu alloy, Mater. Sci. Eng. A, 716(2018), p. 42. doi: 10.1016/j.msea.2018.01.040
|
[6] |
M.M. Sharma, M.F. Amateau, and T.J. Eden, Aging response of Al–Zn–Mg–Cu spray formed alloys and their metal matrix composites, Mater. Sci. Eng. A, 424(2006), No. 1-2, p. 87. doi: 10.1016/j.msea.2006.02.047
|
[7] |
X.D. Wang, Q.L. Pan, L.L. Liu, et al., Characterization of hot extrusion and heat treatment on mechanical properties in a spray formed ultra-high strength Al–Zn–Mg–Cu alloy, Mater. Charact., 144(2018), p. 131. doi: 10.1016/j.matchar.2018.07.012
|
[8] |
A. Sharma, M.C. Oh, J.T. Kim, A.K. Srivastava, and B. Ahn, Investigation of electrochemical corrosion behavior of additive manufactured Ti–6Al–4V alloy for medical implants in different electrolytes, J. Alloys Compd., 830(2020), art. No. 154620. doi: 10.1016/j.jallcom.2020.154620
|
[9] |
X.N. Peng, H.Z. Guo, T. Wang, and Z.K. Yao, Effects of β treatments on microstructures and mechanical properties of TC4-DT titanium alloy, Mater. Sci. Eng. A, 533(2012), p. 55. doi: 10.1016/j.msea.2011.11.033
|
[10] |
A. David, S.K. Gopal, P. Lakshmanan, and A.S. Chenbagam, Corrosion, mechanical and microstructural properties of aluminum 7075–carbon nanotube nanocomposites for robots in corrosive environments, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1140. doi: 10.1007/s12613-022-2592-3
|
[11] |
X.L. Guo, Q. Guo, J.H. Nie, et al., Particle size effect on the interfacial properties of SiC particle-reinforced Al–Cu–Mg composites, Mater. Sci. Eng. A, 711(2018), p. 643. doi: 10.1016/j.msea.2017.11.068
|
[12] |
S.Z. Zhu, G.N. Ma, D. Wang, B.L. Xiao, and Z.Y. Ma, Suppressed negative influence of natural aging in SiCp/6092Al composites, Mater. Sci. Eng. A, 767(2019), art. No. 138422. doi: 10.1016/j.msea.2019.138422
|
[13] |
G.N. Ma, D. Wang, Z.Y. Liu, B.L. Xiao, and Z.Y. Ma, An investigation on particle weakening in T6-treated SiC/Al–Zn–Mg–Cu composites, Mater. Charact., 158(2019), art. No. 109966. doi: 10.1016/j.matchar.2019.109966
|
[14] |
G.N. Ma, D. Wang, B.L. Xiao, and Z.Y. Ma, Effect of particle size on mechanical properties and fracture behaviors of age-hardening SiC/Al–Zn–Mg–Cu composites, Acta Metall. Sin. Engl. Lett., 34(2021), No. 10, p. 1447. doi: 10.1007/s40195-021-01254-w
|
[15] |
S. Liu, Q. Yuan, Y.T. Sima, C.X. Liu, F. Han, and W.W. Qiao, Wear behavior of Zn–38Al–3.5Cu–1.2Mg/SiCp composite under different stabilization treatments, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1270. doi: 10.1007/s12613-020-2217-7
|
[16] |
J.Y. Song, Q. Guo, Q.B. Ouyang, et al., Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al–Zn–Mg–Cu composites, Mater. Sci. Eng. A, 644(2015), No., p. 79.
|
[17] |
Q. Liu, F. Ye, Y. Gao, S.C. Liu, H.X. Yang, and Z.Q. Zhou, Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties, J. Alloys Compd., 585(2014), p. 146. doi: 10.1016/j.jallcom.2013.09.140
|
[18] |
A. Ghosh, M. Ghosh, and R. Kalsar, Influence of homogenisation time on evolution of eutectic phases, dispersoid behaviour and crystallographic texture for Al–Zn–Mg–Cu–Ag alloy, J. Alloys Compd., 802(2019), p. 276. doi: 10.1016/j.jallcom.2019.06.091
|
[19] |
H.C. Li, F.Y. Cao, S. Guo, et al., Effects of Mg and Cu on microstructures and properties of spray-deposited Al–Zn–Mg–Cu alloys, J. Alloys Compd., 719(2017), p. 89. doi: 10.1016/j.jallcom.2017.05.101
|
[20] |
W.H. Yuan, J. Zhang, C.C. Zhang, and Z.H. Chen, Processing of ultra-high strength SiCp/Al–Zn–Mg–Cu composites, J. Mater. Process. Technol., 209(2009), No. 7, p. 3251. doi: 10.1016/j.jmatprotec.2008.07.030
|
[21] |
S. Gatea, H.G. Ou, and G. McCartney, Deformation and fracture characteristics of Al6092/SiC/17.5p metal matrix composite sheets due to heat treatments, Mater. Charact., 142(2018), p. 365. doi: 10.1016/j.matchar.2018.05.050
|
[22] |
L. Chen, F.P. Yuan, P. Jiang, J.J. Xie, and X.L. Wu, Mechanical properties and deformation mechanism of Mg–Al–Zn alloy with gradient microstructure in grain size and orientation, [in] X.L. Wu and Y.T. Zhu, eds., Heterostructured Materials, Jenny Stanford Publishing, New York, 2021, p. 417.
|
[23] |
A. Ureña, E.E. Martı́nez, P. Rodrigo, and L. Gil, Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites, Compos. Sci. Technol., 64(2004), No. 12, p. 1843. doi: 10.1016/j.compscitech.2004.01.010
|
[24] |
G.E. Kiourtsidis, S.M. Skolianos, and G.A. Litsardakis, Aging response of aluminium alloy 2024/silicon carbide particles (SiCp) composites, Mater. Sci. Eng. A, 382(2004), No. 1-2, p. 351. doi: 10.1016/j.msea.2004.05.021
|
[25] |
Z.P. Luo, Crystallography of SiC/MgAl2O4/Al interfaces in a pre-oxidized SiC reinforced SiC/Al composite, Acta Mater., 54(2006), No. 1, p. 47. doi: 10.1016/j.actamat.2005.08.022
|
[26] |
B. Li, B.H. Luo, K.J. He, L.Z. Zeng, W.L. Fan, and Z.H. Bai, Effect of aging on interface characteristics of Al–Mg–Si/SiC composites, J. Alloys Compd., 649(2015), p. 495. doi: 10.1016/j.jallcom.2015.07.033
|
[27] |
W.Y. Wang, Q.L. Pan, X.D. Wang, et al., Non-isothermal aging: A heat treatment method that simultaneously improves the mechanical properties and corrosion resistance of ultra-high strength Al–Zn–Mg–Cu alloy, J. Alloys Compd., 845(2020), art. No. 156286. doi: 10.1016/j.jallcom.2020.156286
|
[28] |
X.B. Yang, J.H. Chen, J.Z. Liu, et al., Spherical constituent particles formed by a multistage solution treatment in Al–Zn–Mg–Cu alloys, Mater. Charact., 83(2013), p. 79. doi: 10.1016/j.matchar.2013.06.005
|
[29] |
D.K. Xu, P.A. Rometsch, and N. Birbilis, Improved solution treatment for an as-rolled Al–Zn–Mg–Cu alloy. Part I. Characterisation of constituent particles and overheating, Mater. Sci. Eng. A, 534(2012), p. 234. doi: 10.1016/j.msea.2011.11.065
|
[30] |
P. Dai, X. Luo, Y.Q. Yang, et al., Thermal stability analysis of a lightweight Al–Zn–Mg–Cu alloy by TEM and tensile tests, Mater. Charact., 153(2019), p. 271. doi: 10.1016/j.matchar.2019.05.018
|
[31] |
S.H. Lee, J.G. Jung, S.I. Baik, et al., Effects of Ti addition on the microstructure and mechanical properties of Al–Zn–Mg–Cu–Zr alloy, Mater. Sci. Eng. A, 801(2021), art. No. 140437. doi: 10.1016/j.msea.2020.140437
|
[32] |
D.M. Liu, B.Q. Xiong, F.G. Bian, et al., Quantitative study of nanoscale precipitates in Al–Zn–Mg–Cu alloys with different chemical compositions, Mater. Sci. Eng. A, 639(2015), p. 245. doi: 10.1016/j.msea.2015.04.104
|
[33] |
Z. Zhang, Y.L. Deng, L.Y. Ye, et al., Influence of aging treatments on the strength and localized corrosion resistance of aged Al–Zn–Mg–Cu alloy, J. Alloys Compd., 846(2020), art. No. 156223. doi: 10.1016/j.jallcom.2020.156223
|
[34] |
G.N. Ma, D. Wang, Z.Y. Liu, et al., Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al–Zn–Mg–Cu composites, Acta Metall. Sin., 55(2019), No. 10, p. 1319.
|