Cite this article as: |
Houyan Cheng, Peng Liu, Yuntao Cui, Ru Ya, Yuxiang Hu, and Jinshu Wang, Modulating charge separation and transfer for high-performance photoelectrodes via built-in electric field, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 1126-1146. https://doi.org/10.1007/s12613-024-2862-3 |
Yuntao Cui E-mail: cuiyuntao@mail.ipc.ac.cn
Ru Ya E-mail: yaruhao@163.com
Yuxiang Hu E-mail: y.hu@bjut.edu.cn
Jinshu Wang E-mail: wangjsh@bjut.edu.cn
[1] |
R. Tang, S.J. Zhou, Z.Y. Zhang, R.K. Zheng, and J. Huang, Engineering nanostructure–interface of photoanode materials toward photoelectrochemical water oxidation, Adv. Mater., 33(2021), No. 17, art. No. 2005389. doi: 10.1002/adma.202005389
|
[2] |
Z.Q. Wei, S. Hou, X. Lin, et al., Unexpected boosted solar water oxidation by nonconjugated polymer-mediated tandem charge transfer, J. Am. Chem. Soc., 142(2020), No. 52, p. 21899. doi: 10.1021/jacs.0c11057
|
[3] |
G.W. Zheng, J.S. Wang, H. Liu, et al., Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting, Nanoscale, 11(2019), No. 41, p. 18968. doi: 10.1039/C9NR03474A
|
[4] |
A. Landman, H. Dotan, G.E. Shter, et al., Photoelectrochemical water splitting in separate oxygen and hydrogen cells, Nat. Mater., 16(2017), No. 6, p. 646. doi: 10.1038/nmat4876
|
[5] |
Y.D. Xue, Y.T. Wang, Z.H. Pan, and K. Sayama, Electrochemical and photoelectrochemical water oxidation for hydrogen peroxide production, Angew. Chem. Int. Ed., 60(2021), No. 19, p. 10469. doi: 10.1002/anie.202011215
|
[6] |
Z. Wang, Z.H. Sun, H. Yin, et al., The role of machine learning in carbon neutrality: Catalyst property prediction, design, and synthesis for carbon dioxide reduction, eScience, 3(2023), No. 4, art. No. 100136. doi: 10.1016/j.esci.2023.100136
|
[7] |
J.X. Gao, W.J. Tian, and H.Y. Zhang, Progress of Nb-containing catalysts for carbon dioxide reduction: A minireview, Tungsten, 4(2022), No. 4, p. 284. doi: 10.1007/s42864-022-00185-y
|
[8] |
Q. Wang and K. Domen, Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies, Chem. Rev., 120(2020), No. 2, p. 919. doi: 10.1021/acs.chemrev.9b00201
|
[9] |
Z.W. Lei, W.B. Cai, Y.F. Rao, et al., Coordination modulation of iridium single-atom catalyst maximizing water oxidation activity, Nat. Commun., 13(2022), No. 1, art. No. 24. doi: 10.1038/s41467-021-27664-z
|
[10] |
Q. Wang, Z. Zhang, C. Cai, et al., Single iridium atom doped Ni2P catalyst for optimal oxygen evolution, J. Am. Chem. Soc., 143(2021), No. 34, p. 13605. doi: 10.1021/jacs.1c04682
|
[11] |
Y.J. Lin, S. Zhou, S.W. Sheehan, and D.W. Wang, Nanonet-based hematite heteronanostructures for efficient solar water splitting, J. Am. Chem. Soc., 133(2011), No. 8, p. 2398.
|
[12] |
X.X. Li, X.C. Liu, C. Liu, J.M. Zeng, and X.P. Qi, Co3O4/stainless steel catalyst with synergistic effect of oxygen vacancies and phosphorus doping for overall water splitting, Tungsten, 5(2023), No. 1, p. 100. doi: 10.1007/s42864-022-00144-7
|
[13] |
M. Xiao, Z.L. Wang, M.Q. Lyu, et al., Hollow nanostructures for photocatalysis: Advantages and challenges, Adv. Mater., 31(2019), No. 38, art. No. e1801369. doi: 10.1002/adma.201801369
|
[14] |
M. Grätzel, Photoelectrochemical cells, Nature, 414(2001), No. 6861, p. 338. doi: 10.1038/35104607
|
[15] |
C.M. Ding, J.Y. Shi, Z.L. Wang, and C. Li, Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces, ACS Catal., 7(2017), No. 1, p. 675. doi: 10.1021/acscatal.6b03107
|
[16] |
J. Liu, S.L. Wang, J.L. Xuan, et al., Preparation of tungsten–iron composite oxides and application in environmental catalysis for volatile organic compounds degradation, Tungsten, 4(2022), No. 1, p. 38. doi: 10.1007/s42864-021-00128-z
|
[17] |
T.T. Yao, X.R. An, H.X. Han, J.Q. Chen, and C. Li, Photoelectrocatalytic materials for solar water splitting, Adv. Energy Mater., 8(2018), No. 21, art. No. 1800210. doi: 10.1002/aenm.201800210
|
[18] |
Y.L. Yang, S.C. Wang, Y.L. Jiao, et al., An unusual red carbon nitride to boost the photoelectrochemical performance of wide bandgap photoanodes, Adv. Funct. Mater., 28(2018), No. 47, art. No. 1805698.
|
[19] |
Q. Wang, M. Nakabayashi, T. Hisatomi, et al., Oxysulfide photocatalyst for visible-light-driven overall water splitting, Nat. Mater., 18(2019), No. 8, p. 827. doi: 10.1038/s41563-019-0399-z
|
[20] |
S.J. Bai, H.R. Qiu, M.M. Song, et al., Porous fixed-bed photoreactor for boosting C–C coupling in photocatalytic CO2 reduction, eScience, 2(2022), No. 4, p. 428. doi: 10.1016/j.esci.2022.06.006
|
[21] |
Y.X. Du, Y.T. Zhou, and M.Z. Zhu, Co-based MOF derived metal catalysts: From nano-level to atom-level, Tungsten, 5(2023), No. 2, p. 201. doi: 10.1007/s42864-022-00197-8
|
[22] |
Y.X. Wang, X. Li, S.N. Liu, et al., Roles of catalyst structure and gas surface reaction in the generation of hydroxyl radicals for photocatalytic oxidation, ACS Catal., 12(2022), No. 5, p. 2770. doi: 10.1021/acscatal.1c05447
|
[23] |
X.M. Ning, D. Yin, Y.P. Fan, et al., Plasmon-enhanced charge separation and surface reactions based on Ag-loaded transition-metal hydroxide for photoelectrochemical water oxidation, Adv. Energy Mater., 11(2021), No. 17, art. No. 2100405. doi: 10.1002/aenm.202100405
|
[24] |
G.J. Liu, S. Ye, P.L. Yan, et al., Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting, Energy Environ. Sci., 9(2016), No. 4, p. 1327. doi: 10.1039/C5EE03802B
|
[25] |
S.C. Wang and L.Z. Wang, Recent progress of tungsten- and molybdenum-based semiconductor materials for solar-hydrogen production, Tungsten, 1(2019), No. 1, p. 19. doi: 10.1007/s42864-019-00006-9
|
[26] |
H. Wu, H.L. Tan, C.Y. Toe, et al., Photocatalytic and photoelectrochemical systems: Similarities and differences, Adv. Mater., 32(2020), No. 18, art. No. 1904717. doi: 10.1002/adma.201904717
|
[27] |
F. Le Formal, S.R. Pendlebury, M. Cornuz, S.D. Tilley, M. Grätzel, and J.R. Durrant, Back electron-hole recombination in hematite photoanodes for water splitting, J. Am. Chem. Soc., 136(2014), No. 6, p. 2564. doi: 10.1021/ja412058x
|
[28] |
X.Y. Yue, J.J. Fan, and Q.J. Xiang, Internal electric field on steering charge migration: Modulations, determinations and energy-related applications, Adv. Funct. Mater., 32(2022), No. 12, art. No. 2110258. doi: 10.1002/adfm.202110258
|
[29] |
S. Ni, H.N. Qu, H.F. Xing, et al., Interfacial engineering of transition-metal sulfides heterostructures with built-in electric-field effects for enhanced oxygen evolution reaction, Chin. J. Chem. Eng., 41(2022), p. 320. doi: 10.1016/j.cjche.2021.09.026
|
[30] |
F. Chen, T.Y. Ma, T.R. Zhang, Y.H. Zhang, and H.W. Huang, Atomic-level charge separation strategies in semiconductor-based photocatalysts, Adv. Mater., 33(2021), No. 10, art. No. e2005256.
|
[31] |
U. Rau and T. Kirchartz, Charge carrier collection and contact selectivity in solar cells, Adv. Mater. Interfaces, 6(2019), No. 20, art. No. 1900252. doi: 10.1002/admi.201900252
|
[32] |
S. Daemi, A. Kundmann, K. Becker, P. Cendula, and F.E. Osterloh, Contactless measurement of the photovoltage in BiVO4 photoelectrodes, Energy Environ. Sci., 16(2023), No. 10, p. 4530. doi: 10.1039/D3EE02087H
|
[33] |
T. Kirchartz, J. Bisquert, I. Mora-Sero, and G. Garcia-Belmonte, Classification of solar cells according to mechanisms of charge separation and charge collection, Phys. Chem. Chem. Phys., 17(2015), No. 6, p. 4007. doi: 10.1039/C4CP05174B
|
[34] |
M. Schleuning, I.Y. Ahmet, R. van de Krol, and M.M. May, The role of selective contacts and built-in field for charge separation and transport in photoelectrochemical devices, Sustainable Energy Fuels, 6(2022), No. 16, p. 3701. doi: 10.1039/D2SE00562J
|
[35] |
D.M. Andoshe, K. Yim, W. Sohn, et al., One-pot synthesis of sulfur and nitrogen codoped titanium dioxide nanorod arrays for superior photoelectrochemical water oxidation, Appl. Catal. B, 234(2018), p. 213. doi: 10.1016/j.apcatb.2018.04.045
|
[36] |
A. Roy, A. Singh, S.A. Aravindh, S. Servottam, U.V. Waghmare, and C.N.R. Rao, Structural Features and HER activity of Cadmium Phosphohalides, Angew. Chem. Int. Ed., 58(2019), No. 21, p. 6926. doi: 10.1002/anie.201900936
|
[37] |
X. Yin, J. Li, L.B. Du, et al., Boosting photoelectrochemical performance of BiVO4 through photoassisted self-reduction, ACS Appl. Energy Mater., 3(2020), No. 5, p. 4403. doi: 10.1021/acsaem.0c00109
|
[38] |
B.T. Leube, C. Robert, D. Foix, et al., Activation of anionic redox in d0 transition metal chalcogenides by anion doping, Nat. Commun., 12(2021), No. 1, art. No. 5485. doi: 10.1038/s41467-021-25760-8
|
[39] |
G. Zeng, T.A. Pham, S. Vanka, et al., Development of a photoelectrochemically self-improving Si/GaN photocathode for efficient and durable H2 production, Nat. Mater., 20(2021), No. 8, p. 1130. doi: 10.1038/s41563-021-00965-w
|
[40] |
H. Tian, Y. Zhao, M.T. Oo, et al., Charge transfer doping of carbon nitride films through noncovalent iodination for enhanced photoelectrochemical performance: Combined experimental and computational insights, Small, 18(2022), No. 46, art. No. e2200510. doi: 10.1002/smll.202200510
|
[41] |
B. Liu, H.M. Chen, C. Liu, S.C. Andrews, C. Hahn, and P. Yang, Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential, J. Am. Chem. Soc., 135(2013), No. 27, p. 9995. doi: 10.1021/ja403761s
|
[42] |
S.C. Wang, J.S. Cai, J.J. Mao, et al., Defective black Ti3+ self-doped TiO2 and reduced graphene oxide composite nanoparticles for boosting visible-light driven photocatalytic and photoelectrochemical activity, Appl. Surf. Sci., 467-468(2019), p. 45.
|
[43] |
Y.W. Dong, H.J. Liu, X. Wang, et al., Manganese doping regulated the built-in electric field of FeBTC for enhanced photoelectrocatalytic hydrolysis, Appl. Catal. B, 328(2023), art. No. 122464. doi: 10.1016/j.apcatb.2023.122464
|
[44] |
B. Zutter, Z. Chen, L. Barrera, et al., Single-particle measurements reveal the origin of low solar-to-hydrogen efficiency of Rh-doped SrTiO3 photocatalysts, ACS Nano, 17(2023), No. 10, p. 9405.
|
[45] |
H. Qiu, S.J. Liu, X.H. Ma, et al., Preparation of Y3+-doped Bi2MoO6 nanosheets for improved visible-light photocatalytic activity: Increased specific surface area, oxygen vacancy formation and efficient carrier separation, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1824. doi: 10.1007/s12613-023-2656-z
|
[46] |
J.J. Zhang, X.X. Chang, C.C. Li, et al., WO3 photoanodes with controllable bulk and surface oxygen vacancies for photoelectrochemical water oxidation, J. Mater. Chem. A, 6(2018), No. 8, p. 3350.
|
[47] |
C.Y. Shao, A.S. Malik, J.F. Han, et al., Oxygen vacancy engineering with flame heating approach towards enhanced photoelectrochemical water oxidation on WO3 photoanode, Nano Energy, 77(2020), art. No. 105190. doi: 10.1016/j.nanoen.2020.105190
|
[48] |
M. Sun, R.T. Gao, J.L. He, et al., Photo-driven oxygen vacancies extends charge carrier lifetime for efficient solar water splitting, Angew. Chem. Int. Ed., 60(2021), No. 32, p. 17601. doi: 10.1002/anie.202104754
|
[49] |
O.J. Sandberg, J. Kurpiers, M. Stolterfoht, et al., On the question of the need for a built-In potential in perovskite solar cells, Adv. Mater. Interfaces, 7(2020), No. 10, art. No. 2000041. doi: 10.1002/admi.202000041
|
[50] |
C. Deibel and V. Dyakonov, Polymer–fullerene bulk heterojunction solar cells, Rep. Prog. Phys., 73(2010), No. 9, art. No. 096401. doi: 10.1088/0034-4885/73/9/096401
|
[51] |
S. Pan, J. Li, Z.C. Wen, et al., Halide perovskite materials for photo(electro)chemical applications: Dimensionality, heterojunction, and performance, Adv. Energy Mater., 12(2022), No. 4, art. No. 2004002. doi: 10.1002/aenm.202004002
|
[52] |
J.L. Liu, Z.Y. Luo, X.C. Mao, et al., Recent advances in self-supported semiconductor heterojunction nanoarrays as efficient photoanodes for photoelectrochemical water splitting, Small, 18(2022), No. 48, art. No. e2204553. doi: 10.1002/smll.202204553
|
[53] |
J. Peng, G.R. Liu, X.H. Jiao, et al., Tuning the carrier transfer behavior of coaxial ZnO/ZnS/ZnIn2 S4 nanorods with a coherent lattice heterojunction structure for photoelectrochemical water oxidation, ChemSusChem, 15(2022), No. 23, art. No. e202201469. doi: 10.1002/cssc.202201469
|
[54] |
J.K. You, Z.F. Liu, Z.G. Guo, Y. Meng, and J.W. Li, Manipulating the charge separation via piezoelectric field and heterojunction to enhance the photoelectrochemical water splitting ability of Bi2WO6/BiOBr photoanode, Int. J. Hydrogen Energy, 47 (2022), No. 91, p. 38609.
|
[55] |
N. Sedaghati, A. Habibi-Yangjeh, and A. Khataee, Fabrication of g-C3N4 nanosheet/Bi5O7Br/NH2-MIL-88B (Fe) nanocomposites: Double S-scheme photocatalysts with impressive performance for the removal of antibiotics under visible light, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1363. doi: 10.1007/s12613-023-2618-5
|
[56] |
F.F. Abdi, L.H. Han, A.H.M. Smets, M. Zeman, B. Dam, and R. van de Krol, Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode, Nat. Commun., 4(2013), art. No. 2195. doi: 10.1038/ncomms3195
|
[57] |
H.M. Huang, B.Y. Dai, W. Wang, et al., Oriented built-in electric field introduced by surface gradient diffusion doping for enhanced photocatalytic H2 evolution in CdS nanorods, Nano Lett., 17(2017), No. 6, p. 3803. doi: 10.1021/acs.nanolett.7b01147
|
[58] |
F. Wang, W. Septina, A. Chemseddine, et al., Gradient self-doped CuBi2O4 with highly improved charge separation efficiency, J. Am. Chem. Soc., 139(2017), No. 42, p. 15094. doi: 10.1021/jacs.7b07847
|
[59] |
W. Tian, C. Chen, L.X. Meng, W.W. Xu, F.R. Cao, and L. Li, PVP treatment induced gradient oxygen doping in In2S3 nanosheet to boost solar water oxidation of WO3 nanoarray photoanode, Adv. Energy Mater., 10(2020), No. 18, art. No. 1903951. doi: 10.1002/aenm.201903951
|
[60] |
Y.X. Hu, Y.Y. Pan, Z.L. Wang, et al., Lattice distortion induced internal electric field in TiO2 photoelectrode for efficient charge separation and transfer, Nat. Commun., 11(2020), No. 1, art. No. 2129. doi: 10.1038/s41467-020-15993-4
|
[61] |
A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238(1972), p. 37. doi: 10.1038/238037a0
|
[62] |
A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38(2009), No. 1, p. 253. doi: 10.1039/B800489G
|
[63] |
M.G. Walter, E.L. Warren, J.R. McKone, et al., Solar water splitting cells, Chem. Rev., 110(2010), No. 11, p. 6446. doi: 10.1021/cr1002326
|
[64] |
J.C. Liu, S.M. Xu, Y.F. Li, R.K. Zhang, and M.F. Shao, Facet engineering of WO3 arrays toward highly efficient and stable photoelectrochemical hydrogen generation from natural seawater, Appl. Catal., B, 264(2020), art. No. 118540. doi: 10.1016/j.apcatb.2019.118540
|
[65] |
Z.Z. Ma, H.L. Hou, K. Song, et al., Engineering oxygen vacancies by one-step growth of distributed homojunctions to enhance charge separation for efficient photoelectrochemical water splitting, Chem. Eng. J., 379(2020), art. No. 122266. doi: 10.1016/j.cej.2019.122266
|
[66] |
X.L. Wei, Z. Wen, Y.N. Liu, et al., Hybridized mechanical and solar energy-driven self-powered hydrogen production, Nano Micro Lett., 12(2020), No. 1, art. No. 88. doi: 10.1007/s40820-020-00422-4
|
[67] |
S. Esiner, H. van Eersel, M.M. Wienk, and R.A.J. Janssen, Triple junction polymer solar cells for photoelectrochemical water splitting, Adv. Mater., 25(2013), No. 21, p. 2932. doi: 10.1002/adma.201300439
|
[68] |
Z.D. Li, C.H. Yao, Y.H. Yu, Z.Y. Cai, and X.D. Wang, Highly efficient capillary photoelectrochemical water splitting using cellulose nanofiber-templated TiO2 photoanodes, Adv. Mater., 26(2014), No. 14, p. 2262. doi: 10.1002/adma.201303369
|
[69] |
P. Zhang, T. Wang, and J.L. Gong, Mechanistic understanding of the plasmonic enhancement for solar water splitting, Adv. Mater., 27(2015), No. 36, p. 5328. doi: 10.1002/adma.201500888
|
[70] |
C.X. Zhao, Z.P. Chen, R. Shi, X.F. Yang, and T.R. Zhang, Recent advances in conjugated polymers for visible-light-driven water splitting, Adv. Mater., 32(2020), No. 28, art. No. e1907296. doi: 10.1002/adma.201907296
|
[71] |
R. Siavash Moakhar, S.M. Hosseini-Hosseinabad, S. Masudy-Panah, et al., Photoelectrochemical water-splitting using CuO-based electrodes for hydrogen production: A review, Adv. Mater., 33(2021), No. 33, art. No. 2007285. doi: 10.1002/adma.202007285
|
[72] |
K. Zhang, J. Wang, W.J. Jiang, W.Q. Yao, H.P. Yang, and Y.F. Zhu, Self-assembled perylene diimide based supramolecular heterojunction with Bi2WO6 for efficient visible-light-driven photocatalysis, Appl. Catal. B, 232(2018), p. 175. doi: 10.1016/j.apcatb.2018.03.059
|
[73] |
K. Maeda and K. Domen, New non-oxide photocatalysts designed for overall water splitting under visible light, J. Phys. Chem. C, 111(2007), No. 22, p. 7851. doi: 10.1021/jp070911w
|
[74] |
Q.G. Pan, C. Zhang, Y.J. Xiong, et al., Boosting charge separation and transfer by plasmon-enhanced MoS2/BiVO4 p–n heterojunction composite for efficient photoelectrochemical water splitting, ACS Sustainable Chem. Eng., 6(2018), No. 5, p. 6378. doi: 10.1021/acssuschemeng.8b00170
|
[75] |
X.Y. Feng, Y.B. Chen, Z.X. Qin, M.L. Wang, and L.J. Guo, Facile fabrication of sandwich structured WO3 nanoplate arrays for efficient photoelectrochemical water splitting, ACS Appl. Mater. Interfaces, 8(2016), No. 28, p. 18089. doi: 10.1021/acsami.6b04887
|
[76] |
J. Ma, K.K. Mao, J. Low, et al., Efficient photoelectrochemical conversion of methane into ethylene glycol by WO3 nanobar arrays, Angew. Chem. Int. Ed., 60(2021), No. 17, p. 9357. doi: 10.1002/anie.202101701
|
[77] |
T. He, L.H. Zu, Y. Zhang, et al., Amorphous semiconductor nanowires created by site-specific heteroatom substitution with significantly enhanced photoelectrochemical performance, ACS Nano, 10(2016), No. 8, p. 7882. doi: 10.1021/acsnano.6b03801
|
[78] |
B.X. Zhou, S.S. Ding, K.X. Yang, et al., Generalized synthetic strategy for amorphous transition metal oxides-based 2D heterojunctions with superb photocatalytic hydrogen and oxygen evolution, Adv. Funct. Mater., 31(2021), No. 11, art. No. 2009230. doi: 10.1002/adfm.202009230
|
[79] |
Q. Chen, W.H. Mo, G.D. Yang, et al., Significantly enhanced photocatalytic CO2 reduction by surface amorphization of cocatalysts, Small, 17(2021), No. 45, art. No. 2102105. doi: 10.1002/smll.202102105
|
[80] |
B. Deng, Z. Wang, W. Chen, et al., Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating, Nat. Commun., 13(2022), No. 1, art. No. 262. doi: 10.1038/s41467-021-27878-1
|
[81] |
B.C. Weng, C.R. Grice, J. Ge, T. Poudel, X.M. Deng, and Y.F. Yan, Barium bismuth niobate double perovskite/tungsten oxide nanosheet photoanode for high-performance photoelectrochemical water splitting, Adv. Energy Mater., 8(2018), No. 10, art. No. 1701655. doi: 10.1002/aenm.201701655
|
[82] |
B.Y. Liu, X. Wang, Y.J. Zhang, et al., A BiVO4 photoanode with a VO x layer bearing oxygen vacancies offers improved charge transfer and oxygen evolution kinetics in photoelectrochemical water splitting, Angew. Chem. Int. Ed., 62(2023), No. 10, art. No. e202217346. doi: 10.1002/anie.202217346
|
[83] |
W. Tress, N. Marinova, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin, and M. Grätzel, Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field, Energy Environ. Sci., 8(2015), No. 3, p. 995. doi: 10.1039/C4EE03664F
|
[84] |
X.E. Liu, F.Y. Wang, and Q. Wang, Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting, Phys. Chem. Chem. Phys., 14(2012), No. 22, p. 7894. doi: 10.1039/c2cp40976c
|
[85] |
H. Xu, J.R. Li, and X.X. Chu, Interfacial built-in electric-field for boosting energy conversion electrocatalysis, Nanoscale Horiz., 8(2023), No. 4, p. 441. doi: 10.1039/D2NH00549B
|
[86] |
J.F. Ni, M.L. Sun, and L. Li, Highly efficient sodium storage in iron oxide nanotube arrays enabled by built-In electric field, Adv. Mater., 31(2019), No. 41, art. No. e1902603. doi: 10.1002/adma.201902603
|
[87] |
D. Giofré, D. Ceresoli, G. Fratesi, and M.I. Trioni, Electronic transport in B-N substituted bilayer graphene nanojunctions, Phys. Rev. B: Condens. Matter, 93(2016), No. 20, art. No. 205420. doi: 10.1103/PhysRevB.93.205420
|
[88] |
L. Ju, X. Tang, J. Li, L.R. Shi, and D. Yuan, Breaking the out-of-plane symmetry of Janus WSSe bilayer with chalcogen substitution for enhanced photocatalytic overall water-splitting, Appl. Surf. Sci., 574(2022), art. No. 151692. doi: 10.1016/j.apsusc.2021.151692
|
[89] |
P.Y. Chen, C.L. Ru, L.L. Hu, et al., Construction of efficient D–A-type photocatalysts by B–N bond substitution for water splitting, Macromolecules, 56(2023), No. 3, p. 858. doi: 10.1021/acs.macromol.2c02117
|
[90] |
X.J. Yuan, S.H. Tang, S. Qiu, and X.J. Liu, Role of interfacial built-In electric field induced by fluorine selective substitution-doped g-C3N4 in photocatalysis of the g-C3N4/TiO2-B(001) heterostructure: Type-II or Z-scheme photocatalytic mechanism? J. Phys. Chem. C, 127(2023), No. 4, p. 1828. doi: 10.1021/acs.jpcc.2c07731
|
[91] |
S. Wang, X. Wang, B. Liu, et al., Vacancy defect engineering of BiVO4 photoanodes for photoelectrochemical water splitting, Nanoscale, 13(2021), No. 43, p. 17989. doi: 10.1039/D1NR05691C
|
[92] |
X.Q. An, T. Li, B. Wen, et al., New insights into defect-mediated heterostructures for photoelectrochemical water splitting, Adv. Energy Mater., 6(2016), No. 8, art. No. 1502268. doi: 10.1002/aenm.201502268
|
[93] |
L. Pan, S.B. Wang, J.W. Xie, L. Wang, X.W. Zhang, and J.J. Zou, Constructing TiO2 p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation, Nano Energy, 28(2016), p. 296. doi: 10.1016/j.nanoen.2016.08.054
|
[94] |
H.M. Wang, Y.G. Xia, H.P. Li, et al., Highly active deficient ternary sulfide photoanode for photoelectrochemical water splitting, Nat. Commun., 11(2020), No. 1, art. No. 3078. doi: 10.1038/s41467-020-16800-w
|
[95] |
W. Lin, Y. Yu, Y.X. Fang, et al., Oxygen vacancy-enhanced photoelectrochemical water splitting of WO3/NiFe-layered double hydroxide photoanodes, Langmuir, 37(2021), No. 21, p. 6490. doi: 10.1021/acs.langmuir.1c00638
|
[96] |
Z.C. Yin, K.N. Zhang, Y.C. Shi, Y.Q. Wang, and S.H. Shen, An interface-cascading silicon photoanode with strengthened built-in electric field and enriched surface oxygen vacancies for efficient photoelectrochemical water splitting, Chem. Eur. J., (2024), art. No. 2303895.
|
[97] |
J.H. Hou, T. Jiang, X.Z. Wang, G.S. Zhang, J.J. Zou, and C.B. Cao, Variable dimensional structure and interface design of g-C3N4/BiOI composites with oxygen vacancy for improving visible-light photocatalytic properties, J. Cleaner Prod., 287(2021), art. No. 125072. doi: 10.1016/j.jclepro.2020.125072
|
[98] |
R.K. Zhang, F.Y. Ning, S.M. Xu, L. Zhou, M.F. Shao, and M. Wei, Oxygen vacancy engineering of WO3 toward largely enhanced photoelectrochemical water splitting, Electrochim. Acta, 274(2018), p. 217. doi: 10.1016/j.electacta.2018.04.109
|
[99] |
K.H. Kim, C.W. Choi, S. Choung, et al., Continuous oxygen vacancy gradient in TiO2 photoelectrodes by a photoelectrochemical-driven ``Self-purification'' process, Adv. Energy Mater., 12(2022), No. 7, art. No. 2103495. doi: 10.1002/aenm.202103495
|
[100] |
M. Gopannagari, D.A. Reddy, D.H. Hong, et al., Augmented photoelectrochemical water reduction: Influence of copper vacancies and hole-transport layer on CuBi2O4 photocathode, J. Mater. Chem. A, 10(2022), No. 12, p. 6623. doi: 10.1039/D1TA09956F
|
[101] |
S.K. Xue, H. Tang, M. Shen, et al., Establishing multiple-order built-In electric fields within heterojunctions to achieve photocarrier spatial separation, Adv. Mater., (2024), art. No. e2311937.
|
[102] |
T. Sheng, X.Z. Liu, L.X. Qian, B. Xu, and Y.Y. Zhang, Photoelectric properties of β-Ga2O3 thin films annealed at different conditions, Rare Met., 41(2022), No. 4, p. 1375. doi: 10.1007/s12598-015-0575-5
|
[103] |
A.J. Wang, L. Yang, J. Ge, et al., Electric-field control of topological spin textures in BiFeO3/La0.67Sr0.33MnO3 heterostructure at room temperature, Rare Met., 42(2023), No. 2, p. 399. doi: 10.1007/s12598-022-02133-8
|
[104] |
J.X. Li, H. Yuan, W.J. Zhang, R.J. Zhu, and Z.B. Jiao, Construction of BiVO4/BiOCl@C Z-scheme heterojunction for enhanced photoelectrochemical performance, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1971. doi: 10.1007/s12613-022-2481-9
|
[105] |
X.F. Zeng, J.S. Wang, Y.N. Zhao, W.L. Zhang, and M.H. Wang, Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 503. doi: 10.1007/s12613-020-2193-y
|
[106] |
J.S. Yang and J.J. Wu, Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting, Nano Energy, 32(2017), p. 232. doi: 10.1016/j.nanoen.2016.12.039
|
[107] |
M. Zhou, Z.G. Guo, Q.G. Song, X.F. Li, and Z.F. Liu, Improved photoelectrochemical response of CuWO4/BiOI p-n heterojunction embedded with plasmonic Ag nanoparticles, Chem. Eng. J., 370(2019), p. 218. doi: 10.1016/j.cej.2019.03.193
|
[108] |
H.D. Jiang, D. Yuan, D.D. Huang, et al., Towards high rate and high areal capacity Zn ion hybrid supercapacitor: Fluffy graphene architecture anchored with ultrathin redox-active molecule, Appl. Surf. Sci., 585(2022), art. No. 152695. doi: 10.1016/j.apsusc.2022.152695
|
[109] |
X.S. Sun, L. Li, S. Jin, et al., Interface boosted highly efficient selective photooxidation in Bi3O4Br/Bi2O3 heterojunctions, eScience, 3(2023), art. No. 100095. doi: 10.1016/j.esci.2023.100095
|
[110] |
F. Han, W. Xu, C.X. Jia, et al., Triggering heteroatomic interdiffusion in one-pot-oxidation synthesized NiO/CuFeO2 heterojunction photocathodes for efficient solar hydrogen production from water splitting, Rare Met., 42(2023), No. 3, p. 853. doi: 10.1007/s12598-022-02177-w
|
[111] |
A. Riapanitra, Y. Asakura, and S. Yin, Improved thermochromic and photocatalytic activities of F–VO2/Nb–TiO2 multifunctional coating films, Tungsten, 1(2019), No. 4, p. 306. doi: 10.1007/s42864-020-00032-y
|
[112] |
H.W. Fang, A.J. Liang, N.B.M. Schröter, S.T. Cui, Z.K. Liu, and Y.L. Chen, Measurement of the electronic structure of a type-II topological Dirac semimetal candidate VAl3 using angle-resolved photoelectron spectroscopy, Tungsten, 5(2023), No. 3, p. 332. doi: 10.1007/s42864-022-00141-w
|
[113] |
M. Chen, F.J. Mo, H. Meng, C. Wang, J. Guo, and Y.Z. Fu, Efficient curing sacrificial agent-induced dual-heterojunction photoelectrochemical system for highly sensitive immunoassay, Anal. Chem., 93(2021), No. 4, p. 2464. doi: 10.1021/acs.analchem.0c04485
|
[114] |
S. Khoomortezaei, H. Abdizadeh, and M.R. Golobostanfard, Ferro-photocatalytic enhancement of photoelectrochemical water splitting using the WO3/BiFeO3 heterojunction, Energy Fuels, 35(2021), No. 11, p. 9623. doi: 10.1021/acs.energyfuels.1c00179
|
[115] |
Y.Y. Li, Q.N. Wu, Q.J. Bu, et al., An effective CdS/Ti-Fe2O3 heterojunction photoanode: Analyzing Z-scheme charge-transfer mechanism for enhanced photoelectrochemical water-oxidation activity, Chin. J. Catal., 42(2021), No. 5, p. 762. doi: 10.1016/S1872-2067(20)63700-7
|
[116] |
Y.D. Liu, G.J. Zhao, J.X. Zhang, F.Q. Bai, and H.X. Zhang, First-principles investigation on the interfacial interaction and electronic structure of BiVO4/WO3 heterostructure semiconductor material, Appl. Surf. Sci., 549(2021), art. No. 149309. doi: 10.1016/j.apsusc.2021.149309
|
[117] |
X.J. Yu, H.H. Chen, Q.G. Ji, et al., P-Cu2O/n-ZnO heterojunction thin films with enhanced photoelectrochemical properties and photocatalytic activities for norfloxacin, Chemosphere, 267(2021), art. No. 129285. doi: 10.1016/j.chemosphere.2020.129285
|
[118] |
Z.W. Cheng, Z.L. Hu, X.G. Ma, M. Wang, N. Gan, and M.H. Pan, Enhancing the visible light photoelectrochemical water splitting of TiO2 photoanode via a p–n heterojunction and the plasmonic effect, J. Phys. Chem. C, 126(2022), No. 28, p. 11510. doi: 10.1021/acs.jpcc.2c02798
|
[119] |
X.L. Zhang, J. Li, B. Leng, et al., High-performance ultraviolet-visible photodetector with high sensitivity and fast response speed based on MoS2-on-ZnO photogating heterojunction, Tungsten, 5(2023), No. 1, p. 91. doi: 10.1007/s42864-022-00139-4
|
[120] |
S.S. Yi, B.R. Wulan, J.M. Yan, and Q. Jiang, Highly efficient photoelectrochemical water splitting: Surface modification of cobalt-phosphate-loaded Co3O4/Fe2O3 p–n heterojunction nanorod arrays, Adv. Funct. Mater., 29(2019), No. 11, art. No. 1801902. doi: 10.1002/adfm.201801902
|
[121] |
X.P. Wang, Z.L. Jin, and X. Li, Monoclinic β-AgVO3 coupled with CdS formed a 1D/1D p–n heterojunction for efficient photocatalytic hydrogen evolution, Rare Met., 42(2023), No. 5, p. 1494. doi: 10.1007/s12598-022-02183-y
|
[122] |
Z.M. Pan, M. Zhao, H.Y. Zhuzhang, G.G. Zhang, M. Anpo, and X.C. Wang, Gradient Zn-doped poly heptazine imides integrated with a van der waals homojunction boosting visible light-driven water oxidation activities, ACS Catal., 11(2021), No. 21, p. 13463. doi: 10.1021/acscatal.1c03687
|
[123] |
H. Zhang, D. Li, W.J. Byun, et al., Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting, Nat. Commun., 11(2020), No. 1, art. No. 4622. doi: 10.1038/s41467-020-18484-8
|
[124] |
J.W. Bai, R.T. Gao, X.T. Guo, et al., Reduction of charge carrier recombination by Ce gradient doping and surface polarization for solar water splitting, Chem. Eng. J., 448(2022), art. No. 137602. doi: 10.1016/j.cej.2022.137602
|
[125] |
J.W. Bai, R.T. Gao, N. Nguyen, X.H. Liu, X.Y. Zhang, and L. Wang, Heterogeneous doping via charge carrier transport improves photoelectrochemical H2O oxidative H2O2 synthesis, Chem. Eng. J., 466(2023), art. No. 142984. doi: 10.1016/j.cej.2023.142984
|
[126] |
J.S. Wang, H.Y. Cheng, Y.T. Cui, et al., Liquid-metal-induced hydrogen insertion in photoelectrodes for enhanced photoelectrochemical water oxidation, ACS Nano, 16(2022), No. 12, p. 21248. doi: 10.1021/acsnano.2c09223
|
[127] |
S.S. Kalanur and H. Seo, Work function tuned, surface Cs intercalated BiVO4 for enhanced photoelectrochemical water splitting reactions, J. Energy Chem., 68(2022), p. 612. doi: 10.1016/j.jechem.2021.12.039
|
[128] |
L.Y. Xie, Q. Zhu, G.Z. Zhang, et al., Tunable hydrogen doping of metal oxide semiconductors with acid-metal treatment at ambient conditions, J. Am. Chem. Soc., 142(2020), No. 9, p. 4136. doi: 10.1021/jacs.0c00561
|
[129] |
H. Zhu, Q.M. Yang, D.P. Liu, et al., Direct electrochemical protonation of metal oxide particles, J. Am. Chem. Soc., 143(2021), No. 24, p. 9236. doi: 10.1021/jacs.1c04631
|
[130] |
Y. He, M. Gu, H.Y. Xiao, et al., Atomistic conversion reaction mechanism of WO3 in secondary ion batteries of Li, Na, and Ca, Angew. Chem. Int. Ed., 55(2016), No. 21, p. 6244. doi: 10.1002/anie.201601542
|
[131] |
K. Qi, J.K. Wei, M.H. Sun, et al., Real-time observation of deep lithiation of tungsten oxide nanowires by in situ electron microscopy, Angew. Chem. Int. Ed., 54(2015), No. 50, p. 15222. doi: 10.1002/anie.201508112
|
[132] |
K. Qi, X.M. Li, M.H. Sun, et al. , In-situ transmission electron microscopy imaging of formation and evolution of Li xWO3 during lithiation of WO3 nanowires, Appl. Phys. Lett., 108(2016), No. 23, art. No. 233103. doi: 10.1063/1.4950968
|
[133] |
J.F. Jing, J. Yang, Z.J. Zhang, and Y.F. Zhu, Supramolecular zinc porphyrin photocatalyst with strong reduction ability and robust built-In electric field for highly efficient hydrogen production, Adv. Energy Mater., 11(2021), No. 29, art. No. 2101392. doi: 10.1002/aenm.202101392
|
[134] |
T. Xiong, W.L. Cen, Y.X. Zhang, and F. Dong, Bridging the g-C3N4 interlayers for enhanced photocatalysis, ACS Catal., 6(2016), No. 4, p. 2462. doi: 10.1021/acscatal.5b02922
|
[135] |
M. Szkoda, K. Trzciński, M. Łapiński, and A. Lisowska-Oleksiak, Photoinduced K+ intercalation into MoO3/FTO photoanode—the impact on the photoelectrochemical performance, Electrocatalysis, 11(2020), No. 2, p. 111. doi: 10.1007/s12678-019-00561-2
|
[136] |
G.Q. Zhang, Y.S. Xu, D.F. Yan, et al., Construction of K+ ion gradient in crystalline carbon nitride to accelerate exciton dissociation and charge separation for visible light H2 production, ACS Catal., 11(2021), No. 12, p. 6995. doi: 10.1021/acscatal.1c00739
|
[137] |
S.S. Kalanur and H. Seo, Intercalation of Barium into monoclinic tungsten oxide nanoplates for enhanced photoelectrochemical water splitting, Chem. Eng. J., 355(2019), p. 784. doi: 10.1016/j.cej.2018.08.210
|