Cite this article as: |
Zhihao Zheng, Mingzhuang Xie, Guoqing Yu, Zegang Wu, Jingjing Zhong, Yi Wang, Hongliang Zhao, and Fengqin Liu, Preparation of lithium-ion battery anode materials from graphitized spent carbon cathode derived from aluminum electrolysis, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2466-2475. https://doi.org/10.1007/s12613-024-2866-z |
Hongliang Zhao E-mail: zhaohl@ustb.edu.cn
Fengqin Liu E-mail: liufq@ustb.edu.cn
[1] |
J. Yuan, J. Xiao, F.C. Li, et al., Co-treatment of spent cathode carbon in caustic and acid leaching process under ultrasonic assisted for preparation of SiC, Ultrason. Sonochem., 41(2018), p. 608. doi: 10.1016/j.ultsonch.2017.10.027
|
[2] |
K. Yang, J. Li, W.L. Huang, et al., A closed-circuit cycle process for recovery of carbon and valuable components from spent carbon cathode by hydrothermal acid-leaching method, J. Environ. Manage., 318(2022), art. No. 115503. doi: 10.1016/j.jenvman.2022.115503
|
[3] |
M.Z. Xie, R.B. Li, H.L. Zhao, W. Liu, T.T. Lu, and F.Q. Liu, Detoxification of spent cathode carbon blocks from aluminum smelters by joint controlling temperature-vacuum process, J. Cleaner Prod., 249(2020), art. No. 119370. doi: 10.1016/j.jclepro.2019.119370
|
[4] |
K. Yang, J. Li, C.P. Zhu, et al., Separation and recovery of valuable elements from acid leachate of spent carbon cathode by fractional precipitation method, J. Environ. Chem. Eng., 11(2023), No. 3, art. No. 110288. doi: 10.1016/j.jece.2023.110288
|
[5] |
Z. Zhu, L. Xu, Z.H. Han, et al., Optimization of response surface methodology (RSM) for defluorination of spent carbon cathode (SCC) in fire-roasting aluminum electrolysis, Miner. Eng., 182(2022), art. No. 107565. doi: 10.1016/j.mineng.2022.107565
|
[6] |
Z. Yao, Q.F. Zhong, J. Xiao, S.C. Ye, L. Tang, and Z.H. Zhang, An environmental-friendly process for dissociating toxic substances and recovering valuable components from spent carbon cathode, J. Hazard. Mater., 404(2021), art. No. 124120. doi: 10.1016/j.jhazmat.2020.124120
|
[7] |
H.Y. Ren, C.L. Zhang, Q. Chang, H.M. Cheng, D.R. Li, and D.D. Zhang, Optimization of flotation conditions for spent pot lining carbon of aluminum reduction, Light Met., (2017), No. 9, p. 26.
|
[8] |
Z.N. Shi, W. Li, X.W. Hu, B.J. Ren, B.L. Gao, and Z.W. Wang, Recovery of carbon and cryolite from spent pot lining of aluminium reduction cells by chemical leaching, Trans. Nonferrous Met. Soc. China, 22(2012), No. 1, p. 222. doi: 10.1016/S1003-6326(11)61164-3
|
[9] |
J. Xiao, J. Yuan, Z.L. Tian, et al., Comparison of ultrasound-assisted and traditional caustic leaching of spent cathode carbon (SCC) from aluminum electrolysis, Ultrason. Sonochem., 40(2018), p. 21. doi: 10.1016/j.ultsonch.2017.06.024
|
[10] |
B. Babu, P. Simon, and A. Balducci, Fast charging materials for high power applications, Adv. Energy Mater., 10(2020), No. 29, art. No. 2001128. doi: 10.1002/aenm.202001128
|
[11] |
G.Q. Yu, M.Z. Xie, Z.H. Zheng, Z.G. Wu, H.L. Zhao, and F.Q. Liu, Efficiently regenerating spent lithium battery graphite anode materials through heat treatment processes for impurity dissipation and crystal structure repair, Resour. Conserv. Recycl., 199(2023), art. No. 107267. doi: 10.1016/j.resconrec.2023.107267
|
[12] |
K. Yang, Z.J. Zhao, X. Xin, Z.L. Tian, K. Peng, and Y.Q. Lai, Graphitic carbon materials extracted from spent carbon cathode of aluminium reduction cell as anodes for lithium ion batteries: Converting the hazardous wastes into value-added materials, J. Taiwan Inst. Chem. Eng., 104(2019), p. 201. doi: 10.1016/j.jtice.2019.09.012
|
[13] |
K. Yang, P.Y. Gong, Z.L. Tian, Y.Q. Lai, and J. Li, Recycling spent carbon cathode by a roasting method and its application in Li-ion batteries anodes, J. Cleaner Prod., 261(2020), art. No. 121090. doi: 10.1016/j.jclepro.2020.121090
|
[14] |
K. Yang, P.Y. Gong, Z.L. Tian, K. Peng, and Y.Q. Lai, Carbon recovered from spent carbon cathode of aluminum reduction cell towards its valorisation as negative electrodes for lithium ion batteries, Diam. Relat. Mater., 109(2020), art. No. 108062. doi: 10.1016/j.diamond.2020.108062
|
[15] |
K.Y. Shi, J. Wang, S.W. Wang, Z.M. Yu, P. Chen, and S. Li, Improving the flotation performance of coking coal using the reverse-direct flotation process, Energy Sources Part A, 40(2018), No. 23, p. 2886. doi: 10.1080/15567036.2018.1512686
|
[16] |
Ö. Öney, Optimization of operating parameters of graphite flotation circuit using box-behnken design, Indian J. Chem. Technol., 25(2018), No. 2, p. 170.
|
[17] |
F. Teng, T. Qu, and Y.N. Dai, Research of effect of alkali leaching factors on graphite purification through high pressure alkali leaching–atmospheric pressure acid leaching, J. Kunming Univ. Sci. Technol. Nat. Sci. Ed., 41(2016), No. 1, p. 14.
|
[18] |
B.L. Xing, C.T. Zhang, Y.J. Cao, et al., Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries, Fuel Process. Technol., 172(2018), p. 162. doi: 10.1016/j.fuproc.2017.12.018
|
[19] |
G.X. Wang, X.P. Shen, B. Wang, J. Yao, and J. Park, Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets, Carbon, 47(2009), No. 5, p. 1359. doi: 10.1016/j.carbon.2009.01.027
|
[20] |
Z.W. Yang, H.J. Guo, X.H. Li, et al., Graphitic carbon balanced between high plateau capacity and high rate capability for lithium ion capacitors, J. Mater. Chem. A, 5(2017), No. 29, p. 15302. doi: 10.1039/C7TA03862C
|
[21] |
S. Mancillas-Salas, J. Barroso-Flores, R. Villaurrutia, V. García-Montalvo, and E. López-Honorato, Production of few-layer graphene by wet media milling using organic solvents and different types of graphite, Ceram. Int., 46(2020), No. 2, p. 2413. doi: 10.1016/j.ceramint.2019.09.235
|
[22] |
Z. Ma, Y. Cui, X. Xiao, et al., A reconstructed graphite-like carbon micro/nano-structure with higher capacity and comparative voltage plateau of graphite, J. Mater. Chem. A, 4(2016), No. 29, p. 11462. doi: 10.1039/C6TA02195F
|
[23] |
Y. Gao, J.L. Zhang, Y.Q. Chen, and C.Y. Wang, Improvement of the electrochemical performance of spent graphite by asphalt coating, Surf. Interfaces, 24(2021), art. No. 101089. doi: 10.1016/j.surfin.2021.101089
|
[24] |
J. Yang, X.Y. Zhou, Y.L. Zou, and J.J. Tang, A hierarchical porous carbon material for high power, lithium ion batteries, Electrochim. Acta, 56(2011), No. 24, p. 8576. doi: 10.1016/j.electacta.2011.07.047
|
[25] |
J.H. Hou, C.B. Cao, F. Idrees, and X.L. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors, ACS Nano, 9(2015), No. 3, p. 2556. doi: 10.1021/nn506394r
|
[26] |
N. Cao, Y.L. Zhang, L.L. Chen, et al., An innovative approach to recover anode from spent lithium-ion battery, J. Power Sources, 483(2021), art. No. 229163. doi: 10.1016/j.jpowsour.2020.229163
|
[27] |
S. Zhang and P.F. Shi, Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte, Electrochim. Acta, 49(2004), No. 9-10, p. 1475. doi: 10.1016/S0013-4686(03)00929-0
|
[28] |
Y.X. Chen, J. Li, Y.Q. Lai, J.M. Li, and Z.A. Zhang, Tailoring graphitic nanostructures in hard carbons as anode materials achieving efficient and ultrafast sodium storage, J. Mater. Sci., 53(2018), No. 14, p. 10313. doi: 10.1007/s10853-018-2295-3
|
[29] |
J.K. Ou, Y.Z. Zhang, L. Chen, et al., Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries, J. Mater. Chem. A, 3(2015), No. 12, p. 6534. doi: 10.1039/C4TA06614F
|
[30] |
S.B. Yang, X.L. Feng, L.J. Zhi, Q. Cao, J. Maier, and K. Müllen, Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage, Adv. Mater., 22(2010), No. 7, p. 838. doi: 10.1002/adma.200902795
|
[31] |
A. Ramos, I. Cameán, N. Cuesta, and A.B. García, Graphitized stacked-cup carbon nanofibers as anode materials for lithium-ion batteries, Electrochim. Acta, 146(2014), p. 769. doi: 10.1016/j.electacta.2014.09.035
|