Cite this article as: |
Zongli Yi, Jiguo Shan, Yue Zhao, Zhenlin Zhang, and Aiping Wu, Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 1072-1088. https://doi.org/10.1007/s12613-024-2869-9 |
Jiguo Shan E-mail: shanjg@tsinghua.edu.cn
Yue Zhao E-mail: zhao-yue@tsinghua.edu.cn
[1] |
G.J. Satish, V.N. Gaitonde, and V.N. Kulkarni, Traditional and non-traditional machining of nickel-based superalloys: A brief review, Mater. Today Proc., 44(2021), p. 1448. doi: 10.1016/j.matpr.2020.11.632
|
[2] |
G. Gudivada and A.K. Pandey, Recent developments in nickel-based superalloys for gas turbine applications: Review, J. Alloys Compd., 963(2023), art. No. 171128. doi: 10.1016/j.jallcom.2023.171128
|
[3] |
D.K. Ganji and G. Rajyalakshmi, Influence of alloying compositions on the properties of nickel-based superalloys: A review, [in] H. Kumar and P.K. Jain, eds., Recent Advances in Mechanical Engineering, Springer, Singapore, 2020, p. 537.
|
[4] |
S.K. Selvaraj, G. Sundaramali, S.J. Dev, et al., Recent advancements in the field of Ni-based superalloys, Adv. Mater. Sci. Eng., 2021(2021), art. No. 9723450.
|
[5] |
T.Y. Wang, Y.M. Xuan, and X.S. Han, Investigation on hybrid thermal features of aero- engines from combustor to turbine, Int. J. Heat Mass Transf., 200(2023), art. No. 123559. doi: 10.1016/j.ijheatmasstransfer.2022.123559
|
[6] |
R. Darolia, Development of strong, oxidation and corrosion resistant nickel-based superalloys: Critical review of challenges, progress and prospects, Int. Mater. Rev., 64(2019), No. 6, p. 355. doi: 10.1080/09506608.2018.1516713
|
[7] |
B.H. Kear and E.R. Thompson, Aircraft gas turbine materials and processes, Science, 208(1980), No. 4446, p. 847. doi: 10.1126/science.208.4446.847
|
[8] |
M.H. Zhang, B.C. Zhang, Y.J. Wen, and X.H. Qu, Research progress on selective laser melting processing for nickel-based superalloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 369. doi: 10.1007/s12613-021-2331-1
|
[9] |
H. Li, W.J. Yan, Y. Zhang, et al., Research progress of hot crack in fusion welding of advanced aeronautical materials, J. Mater. Eng., 50(2022), No. 2, p. 50.
|
[10] |
L. Yu and R. Cao, Welding crack of Ni-based alloys: A review, Acta Metall. Sin., 57(2021), No. 1, p. 16.
|
[11] |
A. Behera, A.K. Sahoo, and S.S. Mahapatra, Application of Ni-based superalloy in aero turbine blade: A review, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., 2023. https://doi.org/10.1177/09544089231219104
|
[12] |
Y.T. Wu, C. Li, Y.F. Li, J. Wu, X.C. Xia, and Y.C. Liu, Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 553. doi: 10.1007/s12613-020-2177-y
|
[13] |
M.C. Chaturvedi, Liquation cracking in heat affected zone in Ni superalloy welds, Mater. Sci. Forum, 546-549(2007), p. 1163. doi: 10.4028/www.scientific.net/MSF.546-549.1163
|
[14] |
Y. Guo, J.X. Zhang, J.K. Xiong, and P.F. Zhao, Research status of additive repairing technologies for nickel-based cast superalloy blades, Rare Met. Mater. Eng., 50(2021), No. 4, p. 1462.
|
[15] |
A.M.M. Garcia, BLISK fabrication by linear friction welding, [in] E. Benini, ed., Advances in Gas Turbine Technology, InTechOpen, London, 2011.
|
[16] |
M.B. Henderson, D. Arrell, R. Larsson, M. Heobel, and G. Marchant, Nickel based superalloy welding practices for industrial gas turbine applications, Sci. Technol. Weld. Join., 9(2004), No. 1, p. 13. doi: 10.1179/136217104225017099
|
[17] |
T. Saju and M. Velu, Review on welding and fracture of nickel based superalloys, Mater. Today Proc., 46(2021), p. 7161. doi: 10.1016/j.matpr.2020.11.334
|
[18] |
S.S. Sashank, S. Rajakumar, R. Karthikeyan, and D.S. Nagaraju, Weldability, mechanical properties and microstructure of nickel based super alloys: A review, E3S Web Conf., 184(2020), art. No. 01040. doi: 10.1051/e3sconf/202018401040
|
[19] |
G.L. Zhu, D.C. Kong, W.Z. Zhou, et al., Research progress on the crack formation mechanism and cracking-free design of γ′ phase strengthened nickel-based superalloys fabricated by selective laser melting, Acta Metall. Sin., 59(2023), No. 1, p. 16.
|
[20] |
Y. Li, H.N. Kou, M.Y. Li, et al., Research progress on hot cracking in precipitation-strengthened nickel-based superalloys fabricated by laser additive manufacturing, Surf. Technol., 2023. https://link.cnki.net/urlid/50.1083.TG.20230927.1658.012
|
[21] |
R. Kataria, R.P. Singh, P. Sharma, and R.K. Phanden, Welding of super alloys: A review, Mater. Today Proc., 38(2021), p. 265. doi: 10.1016/j.matpr.2020.07.198
|
[22] |
J.T.W. Jappes, A. Ajithram, M. Adamkhan, and D. Reena, Welding on Ni based super alloys–A review, Mater. Today Proc., 60(2022), p. 1656. doi: 10.1016/j.matpr.2021.12.208
|
[23] |
C. Guo, G. Li, S. Li, et al., Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition, Nano Mater. Sci., 5(2023), No. 1, p. 53. doi: 10.1016/j.nanoms.2022.08.001
|
[24] |
H.Y. Wan, Z.Z. Liu, Q.Q. Han, and X. Yi, Laser additive manufacturing of cracking-resistant superalloys, Aeronaut. Sci. Technol., 33(2022), No. 9, p. 26.
|
[25] |
Q.S. Wei, Y. Xie, Q. Teng, M.Y. Shen, S.S. Sun, and C. Cai, Crack types, mechanisms, and suppression methods during high-energy beam additive manufacturing of nickel-based superalloys: A review, Chin. J. Mech. Eng. Addit. Manuf. Front., 1(2022), No. 4, art. No. 100055.
|
[26] |
J.N. DuPont, J.C. Lippold, and S.D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.
|
[27] |
Z.L. Zhang, Liquation Cracking Behavior During Laser Cladding Repair of Casting Defects in Nickel-Based Superalloy [Dissertation], Tsinghua University, Beijing, 2021, p. 133.
|
[28] |
D.S. Duvall and W.A. Owczarski, Further heat-affected-zone studies in heat-resistant nickel alloys, Welding J., 46(1967), No. 9, p. 423.
|
[29] |
S.L. Li, K.J. Li, Z.P. Cai, and J.L. Pan, Behavior of M23C6 phase in Inconel 617B superalloy during welding, J. Mater. Process. Technol., 258(2018), p. 38. doi: 10.1016/j.jmatprotec.2018.03.009
|
[30] |
L.O. Osoba, R.K. Sidhu, and O.A. Ojo, On preventing HAZ cracking in laser welded DS Rene 80 superalloy, Mater. Sci. Technol., 27(2011), No. 5, p. 897. doi: 10.1179/026708309X12560332736593
|
[31] |
M. Montazeri and F.M. Ghaini, The liquation cracking behavior of IN738LC superalloy during low power Nd:YAG pulsed laser welding, Mater. Charact., 67(2012), p. 65. doi: 10.1016/j.matchar.2012.02.019
|
[32] |
E. Chauvet, P. Kontis, E.A. Jägle, et al., Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting, Acta Mater., 142(2018), p. 82. doi: 10.1016/j.actamat.2017.09.047
|
[33] |
X.L. Feng, A. Hope, and J.C. Lippold, Effect of Cr on eutectic phase formation and solidification temperature range in Ni–Cr–Hf system, Mater. Lett., 116(2014), p. 79. doi: 10.1016/j.matlet.2013.10.115
|
[34] |
Z.Y. Chen and M. Taheri, The effect of pre-heating and pre-cold treatment on the formation of liquation and solidification cracks of nickel-based superalloy welded by laser beam, J. Mater. Res. Technol., 9(2020), No. 5, p. 11162. doi: 10.1016/j.jmrt.2020.07.053
|
[35] |
M.A. González, D.I. Martínez, A. Pérez, H. Guajardo, and A. Garza, Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy, Mater. Charact., 62(2011), No. 12, p. 1116. doi: 10.1016/j.matchar.2011.09.006
|
[36] |
J.J. Xu, X. Lin, P.F. Guo, et al., The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy, J. Alloys Compd., 749(2018), p. 859. doi: 10.1016/j.jallcom.2018.03.366
|
[37] |
J.J. Xu, X. Lin, P.F. Guo, et al., The effect of preheating on microstructure and mechanical properties of laser solid forming IN-738LC alloy, Mater. Sci. Eng. A, 691(2017), p. 71. doi: 10.1016/j.msea.2017.03.046
|
[38] |
K.C. Chen, T.C. Chen, R.K. Shiue, and L.W. Tsay, Liquation cracking in the heat-affected zone of IN738 superalloy weld, Metals, 8(2018), No. 6, art. No. 387. doi: 10.3390/met8060387
|
[39] |
M. Taheri, Analysis of solidification and liquation cracks in the electron beam welding of IN738 superalloy, Metall. Microstruct. Anal., 10(2021), No. 6, p. 815. doi: 10.1007/s13632-021-00793-z
|
[40] |
H. Naseri, S.M. Sadrossadat, and E. Hajjari, Investigation of the effect of preweld heat treatment on the liquation cracking of GTD-111 superalloy, Mater. Trans., 61(2020), No. 5, p. 903. doi: 10.2320/matertrans.MT-M2019358
|
[41] |
M. Taheri, A. Halvaee, and S.F. Kashani-Bozorg, Effect of Nd:YAG pulsed-laser welding parameters on microstructure and mechanical properties of GTD-111 superalloy joint, Mater. Res. Express, 6(2019), No. 7, art. No. 076549. doi: 10.1088/2053-1591/ab1534
|
[42] |
Ł. Rakoczy, M. Grudzień-Rakoczy, B. Rutkowski, R. Cygan, and A. Zielińska-Lipiec, The role of the microstructural changes during induction preheating on the HAZ liquation cracking susceptibility of Ni-based superalloy, J. Mater. Sci., 59(2024), No. 2, p. 631. doi: 10.1007/s10853-023-09184-x
|
[43] |
A. Mashhuriazar, H. Omidvar, C.H. Gur, and Z. Sajuri, Effect of welding parameters on the liquation cracking behavior of high-chromium Ni-based superalloy, J. Mater. Eng. Perform., 29(2020), No. 12, p. 7843. doi: 10.1007/s11665-020-05292-w
|
[44] |
H. Kazempour-Liasi, M. Tajally, and H. Abdollah-Pour, Effects of filler metals on heat-affected zone cracking in IN-939 superalloy gas-tungsten-arc welds, J. Mater. Eng. Perform., 29(2020), No. 2, p. 1068. doi: 10.1007/s11665-020-04617-z
|
[45] |
M.A.G. Albarrán, D.I. Martínez, E. Díaz, et al., Effect of preweld heat treatment on the microstructure of heat-affected zone (HAZ) and weldability of inconel 939 superalloy, J. Mater. Eng. Perform., 23(2014), No. 4, p. 1125. doi: 10.1007/s11665-013-0704-y
|
[46] |
H.R. Zhang, O.A. Ojo, and M.C. Chaturvedi, Nanosize boride particles in heat-treated nickel base superalloys, Scripta Mater., 58(2008), No. 3, p. 167. doi: 10.1016/j.scriptamat.2007.09.049
|
[47] |
Ł. Rakoczy, M. Grudzień-Rakoczy, B. Rutkowski, et al., The role of the strengthening phases on the HAZ liquation cracking in a cast Ni-based superalloy used in industrial gas turbines, Arch. Civ. Mech. Eng., 23(2023), No. 2, art. No. 119. doi: 10.1007/s43452-023-00659-x
|
[48] |
O.T. Ola, O.A. Ojo, and M.C. Chaturvedi, On the development of a new pre-weld thermal treatment procedure for preventing heat-affected zone (HAZ) liquation cracking in nickel-base IN 738 superalloy, Philos. Mag., 94(2014), No. 29, p. 3295. doi: 10.1080/14786435.2014.956838
|
[49] |
D.X. Kou, Z.Y. Chen, Z.Z. Chen, Y.Q. Li, Y.L. Ma, and Y.M. Li, Evolution of microstructure in nickel-based C-HRA-2 alloy during welding thermal simulation, Mater. Res. Express, 10(2023), No. 5, art. No. 056505. doi: 10.1088/2053-1591/acd1d3
|
[50] |
Y.R. Zheng, Y.L. Cai, and L.B. Wang, Factors influenced incipient melting in Hf-bearing DS Ni-base superalloys, Acta Metall. Sin., 19(1983), No. 3, p. 190.
|
[51] |
Z.L. Zhang, Y. Zhao, J.G. Shan, et al., Evolution behavior of liquid film in the heat-affected zone of laser cladding non-weldable nickel-based superalloy, J. Alloys Compd., 863(2021), art. No. 158463. doi: 10.1016/j.jallcom.2020.158463
|
[52] |
Y.H. Cheng, J.T. Chen, R.K. Shiue, and L.W. Tsay, The evolution of cast microstructures on the HAZ liquation cracking of Mar-M004 weld, Metals, 8(2018), No. 1, art. No. 35. doi: 10.3390/met8010035
|
[53] |
S. Singh and J. Andersson, Hot cracking in cast alloy 718, Sci. Technol. Weld. Join., 23(2018), No. 7, p. 568. doi: 10.1080/13621718.2018.1429238
|
[54] |
N. Phuraya, I. Phung-On, H. Terasaki, and Y. Komizo, Direct observation of liquation in Ni-base superalloy by using confocal laser scanning microscopy, Key Eng. Mater., 658(2015), p. 36. doi: 10.4028/www.scientific.net/KEM.658.36
|
[55] |
B. Schulz, T. Leitner, and S. Primig, In-situ observation of the incipient melting of borides and its effect on the hot-workability of Ni-based superalloys, J. Alloys Compd., 956(2023), art. No. 170324. doi: 10.1016/j.jallcom.2023.170324
|
[56] |
Z.L. Zhang, Y. Zhao, J.G. Shan, et al., The role of shot peening on liquation cracking in laser cladding of K447A nickel superalloy powders over its non-weldable cast structure, Mater. Sci. Eng. A, 823(2021), art. No. 141678. doi: 10.1016/j.msea.2021.141678
|
[57] |
J.L. Cann, A. De Luca, D.C. Dunand, et al., Sustainability through alloy design: Challenges and opportunities, Prog. Mater. Sci., 117(2021), art. No. 100722. doi: 10.1016/j.pmatsci.2020.100722
|
[58] |
S. Kou, Predicting susceptibility to solidification cracking and liquation cracking by CALPHAD, Metals, 11(2021), No. 9, art. No. 1442. doi: 10.3390/met11091442
|
[59] |
D.G. Eskin, Suyitno, and L. Katgerman, Mechanical properties in the semi-solid state and hot tearing of aluminium alloys, Prog. Mater. Sci., 49(2004), No. 5, p. 629. doi: 10.1016/S0079-6425(03)00037-9
|
[60] |
D.G. Eskin and L. Katgerman, A quest for a new hot tearing criterion, Metall. Mater. Trans. A, 38(2007), No. 7, p. 1511. doi: 10.1007/s11661-007-9169-7
|
[61] |
M. Rappaz, J.M. Drezet, and M. Gremaud, A new hot-tearing criterion, Metall. Mater. Trans. A, 30(1999), No. 2, p. 449. doi: 10.1007/s11661-999-0334-z
|
[62] |
M.L. Zhong, H.Q. Sun, W.J. Liu, X.F. Zhu, and J.J. He, Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy, Scripta Mater., 53(2005), No. 2, p. 159. doi: 10.1016/j.scriptamat.2005.03.047
|
[63] |
W.A. Miller and G.A. Chadwick, On the magnitude of the solid/liquid interfacial energy of pure metals and its relation to grain boundary melting, Acta Metall., 15(1967), No. 4, p. 607. doi: 10.1016/0001-6160(67)90104-6
|
[64] |
D. Dye, O. Hunziker, and R.C. Reed, Numerical analysis of the weldability of superalloys, Acta Mater., 49(2001), No. 4, p. 683. doi: 10.1016/S1359-6454(00)00361-X
|
[65] |
S.Q. Guo and X.H. Li, Numerical simulation of solidification and liquation behavior during welding of low-expansion superalloys, Front. Mater. Sci., 5(2011), No. 2, p. 146. doi: 10.1007/s11706-011-0126-4
|
[66] |
C. Teng, D. Pal, H.J. Gong, et al., A review of defect modeling in laser material processing, Addit. Manuf., 14(2017), p. 137.
|
[67] |
H. Gao, G. Agarwal, M. Amirthalingam, and M.J.M. Hermans, Hot cracking investigation during laser welding of high-strength steels with multi-scale modelling approach, Sci. Technol. Weld. Join., 23(2018), No. 4, p. 287. doi: 10.1080/13621718.2017.1384884
|
[68] |
M. Bayat, W. Dong, J. Thorborg, A.C. To, and J.H. Hattel, A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies, Addit. Manuf., 47(2021), art. No. 102278.
|
[69] |
A. Salehi-Shabestari, A. Khakzadshahandashti, and M.R. Rahimipour, Numerical modelling of electron beam welding (EBW) of Zhs6u superalloy and its experimental validation, Mater. High Temp., 39(2022), No. 1, p. 12. doi: 10.1080/09603409.2021.2002237
|
[70] |
J.J. Xu, X. Lin, Y.F. Zhao, et al., HAZ liquation cracking mechanism of IN-738LC superalloy prepared by laser solid forming, Metall. Mater. Trans. A, 49(2018), No. 10, p. 5118. doi: 10.1007/s11661-018-4826-6
|
[71] |
H. Ruan, S. Rezaei, Y. Yang, D. Gross, and B.X. Xu, A thermo-mechanical phase-field fracture model: Application to hot cracking simulations in additive manufacturing, J. Mech. Phys. Solids, 172(2023), art. No. 105169. doi: 10.1016/j.jmps.2022.105169
|
[72] |
Z.K. Wu, J. Zhang, S.C. Wu, C. Xie, and Z. Song, Application of insitu three-dimensional synchrotron radiation X-ray tomography for defects evaluation of metal additive manufactured components, Nondestr. Test., 42(2020), No. 7, p. 46.
|
[73] |
N. Zhang, M.H. Wang, S.Y. Zhang, et al., Review on key common technologies of metal additive manufacturing based on synchrotron radiation and neutron diffraction analysis, Rare Met. Mater. Eng., 51(2022), No. 7, p. 2698.
|
[74] |
A. du Plessis, I. Yadroitsava, and I. Yadroitsev, Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights, Mater. Des., 187(2020), art. No. 108385. doi: 10.1016/j.matdes.2019.108385
|
[75] |
C. Ioannidou, H.H. König, N. Semjatov, et al. , In-situ synchrotron X-ray analysis of metal Additive Manufacturing: Current state, opportunities and challenges, Mater. Des., 219(2022), art. No. 110790. doi: 10.1016/j.matdes.2022.110790
|
[76] |
Y.J. Xie, M.C. Wang, and M.S. Wang, Recent status of surface treatment of Ni-based superalloys with high Al and Ti content by laser and electrospark fusion welding process and the way to solve welding cracking, China Surf. Eng., 23(2010), No. 5, p. 1.
|
[77] |
S. Kou, Welding Metallurgy, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.
|
[78] |
A. Mashhuriazar, M. Badihehaghdam, C.H. Gur, et al., Investigating the effects of repair welding on microstructure, mechanical properties, and corrosion behavior of IN-939 superalloy, J. Mater. Eng. Perform., 32(2023), No. 15, p. 7016. doi: 10.1007/s11665-022-07596-5
|
[79] |
O.A. Ojo, N.L. Richards, and K.R. Vishwakarma, Heat-affected zone cracking in nickel-based superalloys and the role of minor elements, [in] M. Chaturvedi, ed., Welding and Joining of Aerospace Materials, Elsevier, Duxford, 2021, p. 199.
|
[80] |
D. Tomus, P.A. Rometsch, M. Heilmaier, and X.H. Wu, Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selective laser melting, Addit. Manuf., 16(2017), p. 65.
|
[81] |
S. Kou, Solidification and liquation cracking issues in welding, JOM, 55(2003), No. 6, p. 37. doi: 10.1007/s11837-003-0137-4
|
[82] |
H. Zhou, Crystal Plasticity Analysis of the Mechanism of Ductility Dip Cracking in Ni-Based Weld Metal [Dissertation], University of Science and Technology of China, Hefei, 2019, p. 14.
|
[83] |
Y.T. Tang, C. Panwisawas, J.N. Ghoussoub, et al., Alloys-by-design: Application to new superalloys for additive manufacturing, Acta Mater., 202(2021), p. 417. doi: 10.1016/j.actamat.2020.09.023
|
[84] |
Z.J. Sun, Y. Ma, D. Ponge, et al., Thermodynamics-guided alloy and process design for additive manufacturing, Nat. Commun., 13(2022), No. 1, art. No. 4361. doi: 10.1038/s41467-022-31969-y
|
[85] |
Z.X. Li, H. Wang, Y. Li, H.J. Kim, and T. Wolfgang, Progress on effect of processes and microelements on liquation cracking of weld heat-affected zone of nickel-based alloy, J. Mech. Eng., 52(2016), No. 6, p. 37. doi: 10.3901/JME.2016.06.037
|
[86] |
S. Griffiths, H.G. Tabasi, T. Ivas, et al., Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy, Addit. Manuf., 36(2020), art. No. 101443.
|
[87] |
W.Z. Zhou, Y.S. Tian, Q.B. Tan, et al., Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion, Addit. Manuf., 58(2022), art. No. 103016.
|
[88] |
H. Kazempour-Liasi, M. Tajally, and H. Abdollah-Pour, Effects of pre- and post-weld heat treatment cycles on the liquation and strain-age cracking of IN939 superalloy, Eng. Res. Express, 1(2019), No. 2, art. No. 025026. doi: 10.1088/2631-8695/ab4d6c
|
[89] |
A.T. Egbewande, R.A. Buckson, and O.A. Ojo, Analysis of laser beam weldability of Inconel 738 superalloy, Mater. Charact., 61(2010), No. 5, p. 569. doi: 10.1016/j.matchar.2010.02.016
|
[90] |
D. Krenz, A.T. Egbewande, H.R. Zhang, and O.A. Ojo, Single pass laser joining of Inconel 718 superalloy with filler, Mater. Sci. Technol., 27(2011), No. 1, p. 268. doi: 10.1179/174328409X439105
|
[91] |
M. Pakniat, F.M. Ghaini, and M.J. Torkamany, Effect of heat treatment on liquation cracking in continuous fiber and pulsed Nd:YAG laser welding of HASTELLOY X alloy, Metall. Mater. Trans. A, 48(2017), No. 11, p. 5387. doi: 10.1007/s11661-017-4300-x
|
[92] |
H.A. Shahsavari, A.H. Kokabi, and S. Nategh, Effect of preweld microstructure on HAZ liquation cracking of Rene 80 superalloy, Mater. Sci. Technol., 23(2007), No. 5, p. 547. doi: 10.1179/174328407X179539
|
[93] |
A. Khakzadshahandashti, M.R. Rahimipour, K. Shirvani, and M. Razavi, Weldability and liquation cracking behavior of ZhS6U superalloy during electron-beam welding, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 251. doi: 10.1007/s12613-019-1730-z
|
[94] |
F. Yan, S. Liu, C.J. Hu, C.M. Wang, and X.Y. Hu, Liquation cracking behavior and control in the heat affected zone of GH909 alloy during Nd:YAG laser welding, J. Mater. Process. Technol., 244(2017), p. 44. doi: 10.1016/j.jmatprotec.2017.01.018
|
[95] |
E.J. Chun, Y.S. Jeong, K.M. Kim, H. Lee, and S.M. Seo, Suppression of liquation cracking susceptibility via pre-weld heat treatment for manufacturing of CM247LC superalloy turbine blade welds, J. Adv. Join. Process., 4(2021), art. No. 100069. doi: 10.1016/j.jajp.2021.100069
|
[96] |
B.G. Zhang, F. Peng, H.Q. Wang, and K. Han, Research progress on liquation cracking of precipitation hardened nickel-based superallloys in fusion welding, Weld. Join., (2019), No. 9, p. 26.
|
[97] |
Q.G. Li, X. Lin, X.H. Wang, et al., Research progress on cracking mechanism and control of laser additive repaired nickel-based superalloys with high content of Al+Ti, Appl. Laser, 36(2016), No. 4, p. 471.
|
[98] |
H. Kazempour-Liasi, M. Tajally, and H. Abdollah-Pour, Liquation cracking in the heat-affected zone of IN939 superalloy tungsten inert gas weldments, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 764. doi: 10.1007/s12613-019-1954-y
|
[99] |
N.N. Lu, Z.L. Lei, K. Hu, et al., Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition, Addit. Manuf., 34(2020), art. No. 101228.
|
[100] |
J.W. Wang, H.M. Wang, H.W. Gao, et al., Origin of hot cracking formation and suppression method in laser additive manufactured nickel-based superalloys, Mater. Lett., 352(2023), art. No. 135200. doi: 10.1016/j.matlet.2023.135200
|
[101] |
Y. Chen, F.G. Lu, K. Zhang, et al., Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling, J. Alloys Compd., 670(2016), p. 312. doi: 10.1016/j.jallcom.2016.01.250
|
[102] |
K. RamReddy, E.N. Kumar, R. Jeyaraam, G.D.J. Ram, and V.S. Sarma, Effect of grain boundary character distribution on weld heat-affected zone liquation cracking behavior of AISI 316Ti austenitic stainless steel, Mater. Charact., 142(2018), p. 115. doi: 10.1016/j.matchar.2018.05.020
|
[103] |
R. Jeyaraam, V.S. Sarma, and S. Vedantam, Phase field modelling of annealing twin formation, evolution and interactions during grain growth, Comput. Mater. Sci., 182(2020), art. No. 109787. doi: 10.1016/j.commatsci.2020.109787
|
[104] |
K. Yang, T. An, J.L. Qu, et al., Effects of solution cooling rate on the grain boundary and mechanical properties of GH4710 alloy, Mater. Sci. Eng. A, 832(2022), art. No. 142459. doi: 10.1016/j.msea.2021.142459
|
[105] |
H.U. Hong, H.W. Jeong, I.S. Kim, B.G. Choi, Y.S. Yoo, and C.Y. Jo, Significant decrease in interfacial energy of grain boundary through serrated grain boundary transition, Philos. Mag., 92(2012), No. 22, p. 2809. doi: 10.1080/14786435.2012.676212
|
[106] |
H.U. Hong, I.S. Kim, B.G. Choi, Y.S. Yoo, and C.Y. Jo, On the role of grain boundary serration in simulated weld heat-affected zone liquation of a wrought nickel-based superalloy, Metall. Mater. Trans. A, 43(2012), No. 1, p. 173. doi: 10.1007/s11661-011-0837-2
|
[107] |
M.Y. Wen, Y. Sun, J.J. Yu, et al., Amelioration of weld-crack resistance of the M951 superalloy by engineering grain boundaries, J. Mater. Sci. Technol., 78(2021), p. 260. doi: 10.1016/j.jmst.2020.10.069
|
[108] |
M. Qian and J.C. Lippold, The effect of annealing twin-generated special grain boundaries on HAZ liquation cracking of nickel-base superalloys, Acta Mater., 51(2003), No. 12, p. 3351. doi: 10.1016/S1359-6454(03)00090-9
|
[109] |
B. Choudhury and M. Chandrasekaran, Investigation on welding characteristics of aerospace materials–A review, Mater. Today Proc., 4(2017), No. 8, p. 7519. doi: 10.1016/j.matpr.2017.07.083
|
[110] |
D.Y. Kim, J.H. Hwang, K.S. Kim, and J.G. Youn, A study on fusion repair process for a precipitation hardened IN738 Ni-based superalloy, J. Eng. Gas Turbines Power, 122(2000), No. 3, p. 457. doi: 10.1115/1.1287509
|
[111] |
M. Aqeel, S.M. Shariff, J.P. Gautam, and G. Padmanabham, Liquation cracking in Inconel 617 alloy by Laser and Laser-Arc Hybrid welding, Mater. Manuf. Process., 36(2021), No. 8, p. 904. doi: 10.1080/10426914.2020.1866200
|
[112] |
L.O. Osoba, Z. Gao, and O.A. Ojo, Physical and numerical simulations study of heat input dependence of HAZ cracking in nickel base superalloy IN 718, J. Metall. Eng., 2(2013), No. 3, p. 88.
|
[113] |
O.A. Idowu, O.A. Ojo, and M.C. Chaturvedi, Effect of heat input on heat affected zone cracking in laser welded ATI Allvac 718Plus superalloy, Mater. Sci. Eng. A, 454-455(2007), p. 389. doi: 10.1016/j.msea.2006.11.054
|
[114] |
Y.P. Mei, Y.C. Liu, C.X. Liu, et al., Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718, Mater. Des., 89(2016), p. 964. doi: 10.1016/j.matdes.2015.10.082
|
[115] |
S.X. He, Research on Mechanism and Control of Liquation Cracking of Electron Beam Welded K4169 Alloy Joint [Dissertation], Harbin Institute of Technology, Harbin, 2021, p. 54.
|
[116] |
P.L. Zhang, Z.Y. Jia, Z.S. Yu, et al., A review on the effect of laser pulse shaping on the microstructure and hot cracking behavior in the welding of alloys, Opt. Laser Technol., 140(2021), art. No. 107094. doi: 10.1016/j.optlastec.2021.107094
|
[117] |
M. Pakniat, F.M. Ghaini, and M.J. Torkamany, Hot cracking in laser welding of Hastelloy X with pulsed Nd: YAG and continuous wave fiber lasers, Mater. Des., 106(2016), p. 177. doi: 10.1016/j.matdes.2016.05.124
|
[118] |
P. Alvarez, L. Vázquez, N. Ruiz, et al., Comparison of hot cracking susceptibility of TIG and laser beam welded alloy 718 by varestraint testing, Metals, 9(2019), No. 9, art. No. 985. doi: 10.3390/met9090985
|
[119] |
Z.L. Wang, Z.T. Zheng, L.B. Zhao, Y.F. Lei, and K. Yang, Microstructure evolution and nucleation mechanism of Inconel 601H alloy welds by vibration-assisted GTAW, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 788. doi: 10.1007/s12613-018-1627-2
|
[120] |
Y.Z. Bai, Q.H. Lu, X.H. Ren, H. Yan, and P.L. Zhang, Study of Inconel 718 welded by bead-on-plate laser welding under high-frequency micro-vibration condition, Metals, 9(2019), No. 12, art. No. 1335. doi: 10.3390/met9121335
|
[121] |
M.J. Jose, S.S. Kumar, and A. Sharma, Vibration assisted welding processes and their influence on quality of welds, Sci. Technol. Weld. Join., 21(2016), No. 4, p. 243. doi: 10.1179/1362171815Y.0000000088
|
[122] |
Y.C. Zhang, F.Q. Li, and C.G. Tao, Analysis on welding crack in TIG Co–Cr–W wear layer of K417 alloy blades, Foundry Technol., 34(2013), No. 9, p. 1199.
|
[123] |
R. Ghaffari and H. Naffakh-Moosavy, Investigation of macrostructure, microstructure, and hot cracking susceptibility of laser-welded Inconel-718 superalloy under various post-cold treatment environments, CIRP J. Manuf. Sci. Technol., 37(2022), p. 110. doi: 10.1016/j.cirpj.2022.01.007
|
[124] |
M.F. Chiang and C. Chen, Induction-assisted laser welding of IN-738 nickel-base superalloy, Mater. Chem. Phys., 114(2009), No. 1, p. 415. doi: 10.1016/j.matchemphys.2008.09.051
|
[125] |
Y. Yin, S.T. Li, J.W. Yan, X.G. Shuai, Z. Lv, and C.S. Zhang, GTAW repair welding technology of K423A superalloy parts, Electr. Weld. Mach., 46(2016), No. 7, p. 124.
|
[126] |
Q.Q. Han, R. Mertens, M.L. Montero-Sistiaga, et al., Laser powder bed fusion of Hastelloy X: Effects of hot isostatic pressing and the hot cracking mechanism, Mater. Sci. Eng. A, 732(2018), p. 228. doi: 10.1016/j.msea.2018.07.008
|
[127] |
J.L. Xie, Microstructures , Mechanical Properties and Defect Control of Welding Joints of Ni-Based Superalloy for Skew Plate Frame [Dissertation], University of Science and Technology of China, Hefei, 2019, p. 103.
|
[128] |
J.L. Xie, Y.C. Ma, W.W. Xing, L. Zhang, M.Q. Ou, and K. Liu, Heat-affected zone crack healing in IN939 repaired joints using hot isostatic pressing, Weld. World, 62(2018), No. 3, p. 471. doi: 10.1007/s40194-018-0579-5
|
[129] |
Q.G. He, J. Liu, L.X. Li, Z.H. Gao, X.Y. Shi, and G.X. Yang, Effect of hot isostatic pressing on microstructures and mechanical properties of IN738LC superalloy, Mater. Sci. Forum, 898(2017), p. 401. doi: 10.4028/www.scientific.net/MSF.898.401
|
[130] |
M. Vilanova, F. Garciandia, S. Sainz, D. Jorge-Badiola, T. Guraya, and M.S. Sebastian, The limit of hot isostatic pressing for healing cracks present in an additively manufactured nickel superalloy, J. Mater. Process. Technol., 300(2022), art. No. 117398. doi: 10.1016/j.jmatprotec.2021.117398
|