Shuming Wen, Thermodynamic theory of flotation for a complex multiphase solid–liquid system and high-entropy flotation, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1177-1197. https://doi.org/10.1007/s12613-024-2874-z
Cite this article as:
Shuming Wen, Thermodynamic theory of flotation for a complex multiphase solid–liquid system and high-entropy flotation, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1177-1197. https://doi.org/10.1007/s12613-024-2874-z
Research Article

Thermodynamic theory of flotation for a complex multiphase solid–liquid system and high-entropy flotation

+ Author Affiliations
  • Corresponding author:

    Shuming Wen    E-mail: shmwen@126.com

  • Received: 7 December 2023Revised: 3 March 2024Accepted: 5 March 2024Available online: 7 March 2024
  • The flotation of complex solid–liquid multiphase systems involve interactions among multiple components, the core problem facing flotation theory. Meanwhile, the combined use of multicomponent flotation reagents to improve mineral flotation has become an important issue in studies on the efficient use of refractory mineral resources. However, studying the flotation of complex solid–liquid systems is extremely difficult, and no systematic theory has been developed to date. In addition, the physical mechanism associated with combining reagents to improve the flotation effect has not been unified, which limits the development of flotation theory and the progress of flotation technology. In this study, we applied theoretical thermodynamics to a solid–liquid flotation system and used changes in the entropy and Gibbs free energy of the reagents adsorbed on the mineral surface to establish thermodynamic equilibrium equations that describe interactions among various material components while also introducing adsorption equilibrium constants for the flotation reagents adsorbed on the mineral surface. The homogenization effect on the mineral surface in pulp solution was determined using the chemical potentials of the material components of the various mineral surfaces required to maintain balance. The flotation effect can be improved through synergy among multicomponent flotation reagents; its physical essence is the thermodynamic law that as the number of components of flotation reagents on the mineral surface increases, the surface adsorption entropy change increases, and the Gibbs free energy change of adsorption decreases. According to the results obtained using flotation thermodynamics theory, we established high-entropy flotation theory and a technical method in which increasing the types of flotation reagents adsorbed on the mineral surface, increasing the adsorption entropy change of the flotation reagents, decreasing the Gibbs free energy change, and improving the adsorption efficiency and stability of the flotation reagents improves refractory mineral flotation.
  • loading
  • [1]
    J.V. Mehrabani, S.M. Mousavi, and M. Noaparast, Evaluation of the replacement of NaCN with Acidithiobacillus ferrooxidans in the flotation of high-pyrite, low-grade lead–zinc ore, Sep. Purif. Technol., 80(2011), No. 2, p. 202. doi: 10.1016/j.seppur.2011.04.006
    [2]
    W.Z. Yin, L.R. Zhang, and F. Xie, Flotation of Xinhua molybdenite using sodium sulfide as modifier, Trans. Nonferrous Met. Soc. China, 20(2010), No. 4, p. 702. doi: 10.1016/S1003-6326(09)60201-6
    [3]
    Q.B. Cao, S.M. Wen, C.X. Li, S.J. Bai, and D. Liu, Investigation on molybdenite separation from a complex sulfide ore, Adv. Mater. Res., 634-638(2013), p. 3408. doi: 10.4028/www.scientific.net/AMR.634-638.3408
    [4]
    B.Q. Yang, H. Yan, M.Y. Zeng, P.L. Huang, F.F. Jia, and A.P. Teng, A novel copper depressant for selective flotation of chalcopyrite and molybdenite, Miner. Eng., 151(2020), art. No. 106309. doi: 10.1016/j.mineng.2020.106309
    [5]
    R.P. Liao, Q.C. Feng, S.M. Wen, and J. Liu, Flotation separation of molybdenite from chalcopyrite using ferrate (VI) as selective depressant in the absence of a collector, Miner. Eng., 152(2020), art. No. 106369. doi: 10.1016/j.mineng.2020.106369
    [6]
    Y. Chen, X.M. Chen, and Y.J. Peng, The depression of molybdenite flotation by sodium metabisulphite in fresh water and seawater, Miner. Eng., 168 (2021), art. No. 106939. doi: 10.1016/j.mineng.2021.106939
    [7]
    B. Taheri, M. Abdollahy, S.Z.S. Tonkaboni, S. Javadian, and M. Yarahmadi, Dual effects of sodium sulfide on the flotation behavior of chalcopyrite: I. Effect of pulp potential, Int. J. Miner. Metall. Mater., 21(2014), No. 5, p. 415. doi: 10.1007/s12613-014-0924-7
    [8]
    X.M. Qiu, H.Y. Yang, G.B. Chen, L.L. Tong, Z.N. Jin, and Q. Zhang, Interface behavior of chalcopyrite during flotation from cyanide tailings, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 439. doi: 10.1007/s12613-020-2170-5
    [9]
    J.M. Hao, J. Liu, Y.L. Yu, H.L. Gao, X.Y. Qin, and X. Bai, Depressants for separation of chalcopyrite and molybdenite: Review and prospects, Miner. Eng., 201(2023), art. No. 108209. doi: 10.1016/j.mineng.2023.108209
    [10]
    Z.G. Yin, W. Sun, Y.H. Hu, J.H. Zhai, and Q.J. Guan, Evaluation of the replacement of NaCN with depressant mixtures in the separation of copper–molybdenum sulphide ore by flotation, Sep. Purif. Technol., 173(2017), p. 9. doi: 10.1016/j.seppur.2016.09.011
    [11]
    Z.G. Yin, W. Sun, J.D. Liu, et al., Investigation into the flotation response of refractory molybdenum ore to depressant mixtures: A case study, Int. J. Min. Sci. Technol., 26(2016), No. 6, p. 1089. doi: 10.1016/j.ijmst.2016.09.018
    [12]
    X. Chen, G.H. Gu, and Z.X. Chen, Seaweed glue as a novel polymer depressant for the selective separation of chalcopyrite and galena, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1495. doi: 10.1007/s12613-019-1848-z
    [13]
    J.S. Yu, R.Q. Liu, L. Wang, W. Sun, H. Peng, and Y.H. Hu, Selective depression mechanism of ferric chromium lignin sulfonate for chalcopyrite–galena flotation separation, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 489. doi: 10.1007/s12613-018-1595-6
    [14]
    L. Lu, S. Liang, X.R. Zhang, Y.G. Zhu, Z. Hu, and C.X. Wang, Advanced research on galena depressant in copper–lead sulfides flotation separation, Conserv. Util. Miner. Resour., 40 (2020), No. 2, p. 105.
    [15]
    R.F. Sun, D. Liu, Y. Du, B.Y. Zhang, R. Guo, and S.M. Wen, Research status and development of separation of chalcopyrite and galena, Multipurpose Util. Miner. Resour., 4(2021) p. 80.
    [16]
    J.H. Chen, Q.M. Feng, and Y.P. Lu, Research on a new organic depressant ASC for separation chalcopyrite and galena, Multipurpose Util. Miner. Resour., 5(2000), p. 39.
    [17]
    G.H. Ai, Z.F. Xie, H.S. Yan, J.F. Zhong, and X. Huang, Experimental study on mineral processing of a copper lead zinc polymetallic mine in inner Mongolia, Nonferrous Met. Miner. Process. Sec., 3(2015), p. 15.
    [18]
    Z.J. Pu, D.Z. Wei, X.J. Lv, and X.Y. Kou, Advanced research on depressants used for flotation separation of Cu–Pb sulfide minerals, Multipurpose Util. Miner. Resour., 4(2018), p. 13.
    [19]
    L. Yu, Q.J. Liu, H.W. Yuan, Y. Gao, and J.W. Song, Flotation separation of copper–lead mixed concentrate, J. Kunming Univ. Technol. Nat. Sci., 42(2017), No. 1, p. 26.
    [20]
    Y. Zhang, R.Q. Liu, W. Sun, L. Wang, Y.H. Dong, and C.T. Wang, Electrochemical mechanism and flotation of chalcopyrite and galena in the presence of sodium silicate and sodium sulfite, Trans. Nonferrous Met. Soc. China, 30(2020), No. 4, p. 1091. doi: 10.1016/S1003-6326(20)65280-3
    [21]
    L.H. Xu, J. Tian, H.Q. Wu, Z.Y. Lu, W. Sun, and Y.H. Hu, The flotation and adsorption of mixed collectors on oxide and silicate minerals, Adv. Colloid Interface Sci., 250(2017), p. 1. doi: 10.1016/j.cis.2017.11.003
    [22]
    M.J. Rosen and B. Gu, Synergism in binary mixtures of surfactants. 6. Interfacial tension reduction efficiency at the liquid/hydrophobic solid interface, Colloids Surf., 23(1987), No. 1-2, p. 119. doi: 10.1016/0166-6622(87)80254-8
    [23]
    Q. Zhou and P. Somasundaran, Synergistic adsorption of mixtures of cationic gemini and nonionic sugar-based surfactant on silica, J. Colloid Interface Sci., 331(2009), No. 2, p. 288. doi: 10.1016/j.jcis.2008.11.062
    [24]
    D.D. Wu, S.M. Wen, J. Liu, H.Y. Shen, and S.J. Bai, The effect of mixed collectors on zinc oxide flotation, Adv. Mater. Res., 524-527(2012), p. 1124. doi: 10.4028/www.scientific.net/AMR.524-527.1124
    [25]
    Z. Wang, S.K. Huang, and J.H. Xiao, Influence of head-group size of combined collectors on their performance in floating smithsonite, Min. Metall. Eng., 40(2020), No. 4, p. 49.
    [26]
    L. Wang, G.Y. Hu, W. Sun, S.A. Khoso, R.Q. Liu, and X.F. Zhang, Selective flotation of smithsonite from dolomite by using novel mixed collector system, Trans. Nonferrous Met. Soc. China, 29(2019), No. 5, p. 1082. doi: 10.1016/S1003-6326(19)65016-8
    [27]
    A. Mehdilo, M. Irannajad, and H. Zarei, Flotation of zinc oxide ore using cationic cationic and cationic–anionic mixed collectors, Physicochem. Probl. Miner. Process., 49(2013), p. 145.
    [28]
    S.H. Hosseini and E. Forssberg, Physicochemical studies of smithsonite flotation using mixed anionic/cationic collector, Miner. Eng., 20(2007), No. 6, p. 621. doi: 10.1016/j.mineng.2006.12.001
    [29]
    Z.H. Zhang, X.H. Zhang, Z.P. Ye, Z.L. Dai, J.T. Tong, and J.G. Guo, The study on new technique for flotation of wolfram from Shizhuyuan polymetallic ores using GY method, Min. Metall. Eng., 19(1999), No. 4, p. 22.
    [30]
    Q.S. Xiao, C.G. Li , and G.Y. Kang, Study on technological flowsheets for flotation process of Shizhuyuan polymetallic ore with CF method, Min. Metall., 5 (1996), No. 3, p. 26.
    [31]
    Z. Wei, W. Sun, H.S. Han, X.H. Gui, and Y.W. Xing, Flotation chemistry of scheelite and its practice: A comprehensive review, Miner. Eng., 204(2023), art. No. 108404. doi: 10.1016/j.mineng.2023.108404
    [32]
    Y.Z. Zhang, G.H. Gu, X.B. Wu, and K.L. Zhao, Selective depression behavior of guar gum on talc-type scheelite flotation, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 857. doi: 10.1007/s12613-017-1470-x
    [33]
    Z.M. Wang, B. Feng, and Y.G. Chen, Flotation separation depressants for scheelite and calcium-bearing minerals: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1621. doi: 10.1007/s12613-023-2613-x
    [34]
    G. Zhao, S. Wang, and H. Zhong, Study on the activation of scheelite and wolframite by lead nitrate, Minerals, 5(2015), No. 2, p. 247. doi: 10.3390/min5020247
    [35]
    L.Y. Dong, F. Jiao, W.Q. Qin, H.L. Zhu, and W.H. Jia, Activation effect of lead ions on scheelite flotation: Adsorption mechanism, AFM imaging and adsorption model, Sep. Purif. Technol., 209(2019), p. 955. doi: 10.1016/j.seppur.2018.09.051
    [36]
    H.S. Han, Y.H. Hu, W. Sun, et al., Fatty acid flotation versus BHA flotation of tungsten minerals and their performance in flotation practice, Int. J. Miner. Process., 159(2017), p. 22. doi: 10.1016/j.minpro.2016.12.006
    [37]
    J.J. Wang, Z.Y. Gao, H.S. Han, W. Sun, Y.S. Gao, and S. Ren, Impact of NaOL as an accelerator on the selective separation of scheelite from fluorite using a novel self-assembled Pb–BHA–NaOL collector system, Appl. Surf. Sci., 537(2021), art. No. 147778. doi: 10.1016/j.apsusc.2020.147778
    [38]
    Z. Wei, W. Sun, H.S. Han, G.R. Liu, J.H. Fu, and Y.W. Xing, Probing a colloidal lead-group multiple ligand collector and its adsorption on a mineral surface, Miner. Eng., 160(2021), art. No. 106696. doi: 10.1016/j.mineng.2020.106696
    [39]
    C. Zhao, C.Y. Sun, Y.G. Zhu, Y.M. Zhu, and W.Z. Yin, Study of the mechanism of the Fe–BHA chelates in scheelite flotation, Minerals, 12(2022), No. 4, p. 484. doi: 10.3390/min12040484
    [40]
    X. Wang, S.M. Wen, Q. Zuo, et al., Interaction of manganese ions with scheelite surfaces and its effect on collector adsorption and flotation, Separations, 9(2022), No. 11, p. 365. doi: 10.3390/separations9110365
    [41]
    J.Z. Cai, J.S. Deng, L. Wang, et al., Reagent types and action mechanisms in ilmenite flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1656. doi: 10.1007/s12613-021-2380-5
    [42]
    F.Y. Ma, P. Zhang, and D.P. Tao, Surface nanobubble characterization and its enhancement mechanisms for fine-particle flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 727. doi: 10.1007/s12613-022-2450-3
    [43]
    Q.C. Feng, S.M. Wen, W.J. Zhao, and H.T. Chen, Interaction mechanism of magnesium ions with cassiterite and quartz surfaces and its response to flotation separation, Sep. Purif. Technol., 206(2018), p. 239. doi: 10.1016/j.seppur.2018.06.005
    [44]
    Q. Wei, L.Q. Feng, L.Y. Dong, F. Jiao, and W.Q. Qin, Selective co-adsorption mechanism of a new mixed collector on the flotation separation of lepidolite from quartz, Colloids Surf. A: Physicochem. Eng. Aspects, 612(2021), art. No. 125973. doi: 10.1016/j.colsurfa.2020.125973
    [45]
    S. Fang, L.H. Xu, H.Q. Wu, et al., Comparative studies of flotation and adsorption of Pb(II)/benzohydroxamic acid collector complexes on ilmenite and titanaugite, Powder Technol., 345(2019), p. 35. doi: 10.1016/j.powtec.2018.12.089
    [46]
    F.X. Li, H. Zhong, G. Zhao, S. Wang, and G.Y. Liu, Adsorption of α-hydroxyoctyl phosphonic acid to ilmenite/water interface and its application in flotation, Colloids Surf. A, 490(2016), p. 67. doi: 10.1016/j.colsurfa.2015.11.015
    [47]
    W.J. Liu, J. Zhang, W.Q. Wang, et al., Flotation behaviors of ilmenite, titanaugite, and forsterite using sodium oleate as the collector, Miner. Eng., 72(2015), p. 1. doi: 10.1016/j.mineng.2014.12.021
    [48]
    L.H. Xu, J. Tian, H.Q. Wu, F.C. Yi, and F.Q. Dong, A review on the synergetic effect of the mixed collectors on mineral surface and its application in flotation, Conserv. Util. Miner. Resour., 2(2017), p. 107.
    [49]
    D.X. Zhang, J.H. Kang, and W.X. Zhu, Selective flotation separation of fluorite and calcite by utilising a novel anionic/nonionic collector, Colloids Surf. A: Physicochem. Eng. Aspects, 642(2022), art. No. 128687. doi: 10.1016/j.colsurfa.2022.128687
    [50]
    Y.C. Miao, S.M. Wen, Q. Zuo, Z.H. Shen, Q. Zhang, and Q.C. Feng, Co-adsorption of NaOL/SHA composite collectors on cassiterite surfaces and its effect on surface hydrophobicity and floatability, Sep. Purif. Technol., 308(2023), art. No. 122954. doi: 10.1016/j.seppur.2022.122954
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(1243) PDF Downloads(38) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return