Xiubo Xie, Heshan Wang, Hideo Kimura, Cui Ni, Wei Du, and Guanglei Wu, NiCoZn/C@melamine sponge-derived carbon composites with high-performance electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2274-2286. https://doi.org/10.1007/s12613-024-2880-1
Cite this article as:
Xiubo Xie, Heshan Wang, Hideo Kimura, Cui Ni, Wei Du, and Guanglei Wu, NiCoZn/C@melamine sponge-derived carbon composites with high-performance electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2274-2286. https://doi.org/10.1007/s12613-024-2880-1
Research Article

NiCoZn/C@melamine sponge-derived carbon composites with high-performance electromagnetic wave absorption

+ Author Affiliations
  • NiMZn/C@melamine sponge-derived carbon (MSDC) composites (M = Co, Fe, and Mn) were prepared by a vacuum pumping solution method followed by carbonization. A large number of carbon nanotubes (CNTs) homogeneously attached to the surfaces of the three-dimensional cross-linked of the sponge-derived carbon in the NiCoZn/C@MSDC composite, and CNTs were detected in the NiFeZn/C@MSDC and NiMnZn/C@MSDC composites. Ni3ZnC0.7, Ni3Fe, and MnO in-situ formed in the NiFeZn/C@MSDC and NiMnZn/C@MSDC composites. The CNTs in the NiCoZn/C@MSDC composite efficiently modulated its complex permittivity. Thus, the composite exhibited the best performance among the composites, with the minimum reflection loss (RLmin) of −33.1 dB at 18 GHz and thickness of 1.4 mm. The bandwidth for RL of ≤−10 dB was up to 5.04 GHz at the thickness of 1.7 mm and loading of 25wt%. The optimized impedance matching, enhanced interfacial and dipole polarization, remarkable conduction loss, and multiple reflections and scattering of the incident microwaves improved the microwave absorption performance. The effects of Co, Ni, and Fe on the phase and morphology provided an alternative way for developing highly efficient and broadband microwave absorbers.
  • loading
  • [1]
    J. Cui, X.H. Wang, L. Huang, C.W. Zhang, Y. Yuan, and Y.B. Li, Environmentally friendly bark-derived Co-doped porous carbon composites for microwave absorption, Carbon, 187(2022), p. 115. doi: 10.1016/j.carbon.2021.10.077
    [2]
    S.J. Zhang, D. Lan, J.J. Zheng, et al., Perspectives of nitrogen-doped carbons for electromagnetic wave absorption, Carbon, 221(2024), art. No. 118925. doi: 10.1016/j.carbon.2024.118925
    [3]
    R.W. Shu, Y. Wu, X.H. Li, N.N. Li, and J.J. Shi, Fabrication of bimetallic metal–organic frameworks derived cobalt iron alloy@carbon–carbon nanotubes composites as ultrathin and high-efficiency microwave absorbers, J. Colloid Interface Sci., 613(2022), p. 477. doi: 10.1016/j.jcis.2022.01.063
    [4]
    R.W. Shu, J.B. Zhang, Y. Wu, Z.L. Wan, and X.H. Li, Synthesis of nitrogen-doped reduced graphene oxide/cobalt–zinc ferrite composite aerogels with superior compression recovery and electromagnetic wave absorption performance, Nanoscale, 13(2021), No. 8, p. 4485. doi: 10.1039/D0NR08777G
    [5]
    L.J. Rao, L. Wang, C.D. Yang, et al., Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption, Adv. Funct. Mater., 33(2023), No. 16, art. No. 2213258. doi: 10.1002/adfm.202213258
    [6]
    Z. Zong, P.G. Ren, Z.Z. Guo, et al., Three-dimensional macroporous hybrid carbon aerogel with heterogeneous structure derived from MXene/cellulose aerogel for absorption-dominant electromagnetic interference shielding and excellent thermal insulation performance, J. Colloid Interface Sci., 619(2022), p. 96. doi: 10.1016/j.jcis.2022.03.136
    [7]
    Z. Zou, M.Q. Ning, Z.K. Lei, et al., 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2–18 GHz, Carbon, 193(2022), p. 182. doi: 10.1016/j.carbon.2022.03.017
    [8]
    S.N. Zheng, Z.H. Zeng, J. Qiao, Y. Liu, and J.R. Liu, Facile preparation of C/MnO/Co nanocomposite fibers for High-Performance microwave absorption, Composites Part A, 155(2022), art. No. 106814. doi: 10.1016/j.compositesa.2022.106814
    [9]
    F. Wu, M.Y. Ling, L.Y. Wan, et al., Three-dimensional FeMZn (M = Co or Ni) MOFs: Ions coordinated self-assembling processes and boosting microwave absorption, Chem. Eng. J., 435(2022), art. No. 134905. doi: 10.1016/j.cej.2022.134905
    [10]
    P.Z. Liu, T.D. Gao, W.J. He, and P.B. Liu, Electrospinning of hierarchical carbon fibers with multi-dimensional magnetic configurations toward prominent microwave absorption, Carbon, 202(2023), p. 244. doi: 10.1016/j.carbon.2022.10.089
    [11]
    R.S. Li, Q. Gao, H.N. Xing, et al., Lightweight, multifunctional MXene/polymer composites with enhanced electromagnetic wave absorption and high-performance thermal conductivity, Carbon, 183(2021), p. 301. doi: 10.1016/j.carbon.2021.07.029
    [12]
    D.W. Liu, Y.C. Du, F.Y. Wang, et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption, Carbon, 157(2020), p. 478. doi: 10.1016/j.carbon.2019.10.056
    [13]
    L. Kong, S.Y. Zhang, Y.J. Liu, H.L. Xu, X.M. Fan, and J.F. Huang, Flexible CNTs/CNF–WPU aerogel for smart electromagnetic wave absorbing with tuning effective absorption bandwidth, Carbon, 207(2023), p. 13. doi: 10.1016/j.carbon.2023.02.067
    [14]
    H.J. Wei, Y. Tian, Q. Chen, et al., Microwave absorption performance of 2D iron-quinoid MOF, Chem. Eng. J., 405(2021), art. No. 126637. doi: 10.1016/j.cej.2020.126637
    [15]
    M.T. Qiao, Y.R. Tian, J.X. Li, et al., Core–shell Fe3O4@SnO2 nanochains toward the application of radar-infrared-visible compatible stealth, J. Colloid Interface Sci., 609(2022), p. 330. doi: 10.1016/j.jcis.2021.12.012
    [16]
    Q.K. Man, Z.K. Lei, A.P. Wang, et al. , In situ-derived carbon nanotubes decorated the surface of Co xNi y@C composites from MOFs for efficient electromagnetic wave absorption, J. Alloys Compd., 932(2023), art. No. 167726. doi: 10.1016/j.jallcom.2022.167726
    [17]
    C.J. Li, X. Wang, X.H. Liu, J.Y. Zhang, S. Bi, and Z.L. Hou, Broadband and strong microwave absorption combining excellent EMI shielding of VGCF/carbonyl iron composites derived from synergistic magnetic and dielectric losses, Carbon, 214(2023), art. No. 118383. doi: 10.1016/j.carbon.2023.118383
    [18]
    Q.Y. Qin, M. Yang, Y. Shi, et al., Mn-doped Ti-based MOFs for magnetic resonance imaging-guided synergistic microwave thermal and microwave dynamic therapy of liver cancer, Bioact. Mater., 27(2023), p. 72.
    [19]
    P.S. Moyo, B. Vatsha, G. Mehlana, L.C. Matsinha, and B.C.E. Makhubela, Selective Cu and Ni-MOFs as pre-catalysts for the hydrogenation of furfural to furfuryl alcohol, Dalton Trans., 52(2023), No. 19, p. 6300. doi: 10.1039/D3DT00671A
    [20]
    R.Y. Tan, J.T. Zhou, Z.J. Yao, et al., Ferrero Rocher® chocolates-like FeCo/C microspheres with adjustable electromagnetic properties for effective microwave absorption, J. Alloys Compd., 857(2021), art. No. 157568. doi: 10.1016/j.jallcom.2020.157568
    [21]
    G.X. Zheng, Y.F. Deng, X.Z. Huang, X.B. Yu, and Z. Yuan, Construction of zinc MOFs-derived carbon-based Zn–Co oxides porous nanocages and their application as electrodes for electrochemical energy storage, Energy Fuels, 37(2023), No. 8, p. 6168. doi: 10.1021/acs.energyfuels.2c04341
    [22]
    G.D. Zhou, X.L. Yan, T.Y. Zhang, K. Wang, J.T. Zhang, and J.J. Guo, MOFs-derived hierarchical porous carbon supported Co@NC nanocapsules for pH universal oxygen reduction reaction and Zn–air batteries, Appl. Surf. Sci., 621(2023), art. No. 156906. doi: 10.1016/j.apsusc.2023.156906
    [23]
    Y. Zhao, X.H. Zhan, Y.P. Sun, et al., MnO x@N-doped carbon nanosheets derived from Mn-MOFs and g-C3N4 for peroxymonosulfate activation: Electron-rich Mn center induced by N doping, Chemosphere, 310(2023), art. No. 136937. doi: 10.1016/j.chemosphere.2022.136937
    [24]
    Z.H. Yang, H.L. Lv, and R.B. Wu, Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation, Nano Res., 9(2016), No. 12, p. 3671. doi: 10.1007/s12274-016-1238-z
    [25]
    X. Zhang, X.L. Tian, C. Liu, et al., MnCo-MOF-74 derived porous MnO/Co/C heterogeneous nanocomposites for high-efficiency electromagnetic wave absorption, Carbon, 194(2022), p. 257. doi: 10.1016/j.carbon.2022.04.001
    [26]
    M.X. Sun, Z.J. Li, B. Wei, et al., MOFs derived Fe/Co/C heterogeneous composite absorbers for efficient microwave absorption, Synth. Met., 292(2023), art. No. 117229. doi: 10.1016/j.synthmet.2022.117229
    [27]
    J.H. Luo, M.N. Feng, Z.Y. Dai, C.Y. Jiang, W. Yao, and N.X. Zhai, MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption, Nano Res., 15(2022), No. 7, p. 5781. doi: 10.1007/s12274-022-4411-6
    [28]
    X.B. Xie, B. Zhang, H. Kimura, C. Ni, R.H. Yu, and W. Du, Morphology evolution of bimetallic Ni/Zn-MOFs and derived Ni3ZnC0.7/Ni/ZnO used to destabilize MgH2, Chem. Eng. J., 464(2023), art. No. 142630. doi: 10.1016/j.cej.2023.142630
    [29]
    K.J. Ma, X.F. Liu, Z.L. Luo, Z.X. Zhou, W.L. Mo, and X.T. Su, FeNi-MIL53 bimetallic MOFs as a visible light photocatalyst for water oxidation, Mater. Lett., 332(2023), art. No. 133477. doi: 10.1016/j.matlet.2022.133477
    [30]
    J.H. Ma, Y.T. Zhang, B.W. Wang, Z.X. Jiang, Q.Y. Zhang, and S.F. Zhuo, Interfacial engineering of bimetallic Ni/Co-MOFs with H-substituted graphdiyne for ammonia electrosynthesis from nitrate, ACS Nano, 17(2023), No. 7, p. 6687. doi: 10.1021/acsnano.2c12491
    [31]
    J.H. Luo, X.P. Li, W.X. Yan, P.C. Shu, and J. Mei, RGO supported bimetallic MOFs-derived Co/MnO/porous carbon composite toward broadband electromagnetic wave absorption, Carbon, 205(2023), p. 552. doi: 10.1016/j.carbon.2023.01.056
    [32]
    X.Q. Sun, Y.K. Wang, H. Kimura, et al., Thermal stability of Ni3ZnC0.7: As tunable additive for biomass-derived carbon sheet composites with efficient microwave absorption, J. Colloid Interface Sci., 642(2023), p. 447. doi: 10.1016/j.jcis.2023.03.194
    [33]
    L.R. Xiao, Y.K. Wang, H. Kimura, et al., Synergetic dielectric and magnetic losses of melamine sponge-loaded puffed-rice biomass carbon and Ni3ZnC0.7 for optimal effective microwave absorption, J. Colloid Interface Sci., 653(2024), p. 570. doi: 10.1016/j.jcis.2023.09.104
    [34]
    B. Zhang, Z.L. Xu, Y.B. He, et al., Exceptional rate performance of functionalized carbon nanofiber anodes containing nanopores created by (Fe) sacrificial catalyst, Nano Energy, 4(2014), p. 88. doi: 10.1016/j.nanoen.2013.12.011
    [35]
    Y.L. Li, H. Yuan, Y.B. Chen, X.Y. Wei, K.Y. Sui, and Y.Q. Tan, Application and exploration of nanofibrous strategy in electrode design, J. Mater. Sci. Technol., 74(2021), p. 189. doi: 10.1016/j.jmst.2020.10.015
    [36]
    Y.H. Zhu, Q.Q. Wang, Y.H. Han, L. Li, and M.S. Cao, Constructing WSe2@CNTs heterojunction to tune attenuation capability for efficient microwave absorbing and green EMI shielding, Appl. Surf. Sci., 592(2022), art. No. 153253. doi: 10.1016/j.apsusc.2022.153253
    [37]
    Z.H. Zhou, D. Lan, J.W. Ren, et al., Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for high-performance electromagnetic wave absorption, J. Mater. Sci. Technol., 185(2024), p. 165. doi: 10.1016/j.jmst.2023.11.010
    [38]
    Y. Zhu, G.Z. Xie, H.M. Wu, N.Y. Xie, X.Y. Huang, and J. Chen, Electromagnetic and microwave absorption properties of tunable carbonyl iron absorbing materials prepared by self-composite treatment in 2–8 GHz band, J. Mater. Sci. Mater. Electron., 33(2022), No. 20, p. 16688. doi: 10.1007/s10854-022-08566-2
    [39]
    B.L. Wang, M.C. Ding, C.X. Shao, et al., Facile synthesis of Co xFe y@C nanocomposite fibers derived from pyrolysis of cobalt/iron chelate nanowires for strong broadband electromagnetic wave absorption, Chem. Eng. J., 465(2023), art. No. 142803. doi: 10.1016/j.cej.2023.142803
    [40]
    S.Q. Zhu, Z.K. Lei, Z.H. Liu, et al., Synthesis and microwave absorption properties of sandwich microstructure Ce2Fe17N3– δ/expanded graphite composites, J. Alloys Compd., 907(2022), art. No. 164445. doi: 10.1016/j.jallcom.2022.164445
    [41]
    P. Wu, Y.D. Zhang, H.B. Hao, et al., Effects of nitriding and Ni doping for the frequency of domain wall resonance peak and high-frequency magnetic performance of easy-plane Y2Fe17, J. Magn. Magn. Mater., 549(2022), art. No. 168962. doi: 10.1016/j.jmmm.2021.168962
    [42]
    F. Zhang, Z.R. Jia, J.X. Zhou, J.K. Liu, G.L. Wu, and P.F. Yin, Metal–organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption, Chem. Eng. J., 450(2022), art. No. 138205. doi: 10.1016/j.cej.2022.138205
    [43]
    B.S. Dai, J.Y. Li, X.G. Liu, N. Wang, Y.X. Dai, and Y. Qi, Multiple synergistic losses in the absorption of electromagnetic waves by three-dimensional cross-linked carbon fiber, Carbon, 195(2022), p. 308. doi: 10.1016/j.carbon.2022.04.035
    [44]
    C. Zhang, Y.T. He, Q.W. Song, et al., High performance microwave absorption of light weight and porous non-carbon-based polymeric monoliths via a gel emulsion template, Polym. Chem., 13(2022), No. 12, p. 1672. doi: 10.1039/D2PY00002D
    [45]
    D.M. Xu, N.N. Wu, K. Le, et al., Bimetal oxide-derived flower-like heterogeneous Co/MnO@C composites with synergistic magnetic–dielectric attenuation for electromagnetic wave absorption, J. Mater. Chem. C, 8(2020), No. 7, p. 2451. doi: 10.1039/C9TC05852D
    [46]
    A.L. Feng, D. Lan, J.K. Liu, G.L. Wu, and Z.R. Jia, Dual strategy of A-site ion substitution and self-assembled MoS2 wrapping to boost permittivity for reinforced microwave absorption performance, J. Mater. Sci. Technol., 180(2024), p. 1. doi: 10.1016/j.jmst.2023.08.060
    [47]
    H.Y. Gong, X.J. Zheng, K. Zeng, et al., Ni3Fe nanoalloys embedded in N-doped carbon derived from dual-metal ZIF: Efficient bifunctional electrocatalyst for Zn-air battery, Carbon, 174(2021), p. 475. doi: 10.1016/j.carbon.2020.12.053
    [48]
    S. Golchinvafa, S.M. Masoudpanah, and S. Alamolhoda, Ultra-broadband FeNi3/NiZnFe2O4/ZnO composite powders for microwave absorption, J. Mater. Res. Technol., 21(2022), p. 1737. doi: 10.1016/j.jmrt.2022.09.123
    [49]
    A.G. D’Aloia, H.C. Bidsorkhi, G. De Bellis, and M.S. Sarto, Graphene based wideband electromagnetic absorbing textiles at microwave bands, IEEE Trans. Electromagn. Compat., 64(2022), No. 3, p. 710. doi: 10.1109/TEMC.2021.3133665
    [50]
    X.C. Zhang, X. Zhang, H.R. Yuan, et al., CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123208. doi: 10.1016/j.cej.2019.123208
    [51]
    Q. Yu, J. Zou, C.X. Yu, et al., Nitrogen doped porous biochar/β-CD-MOFs heterostructures: Bi-functional material for highly sensitive electrochemical detection and removal of acetaminophen, Molecules, 28(2023), No. 6, art. No. 2437. doi: 10.3390/molecules28062437
    [52]
    W.W. Li, W.L. Ji, M. Yılmaz, T.C. Zhang, and S.J. Yuan, One-pot synthesis of MWCNTs/Fe-MOFs nanocomposites for enhanced adsorption of As(V) in aqueous solution, Appl. Surf. Sci., 609(2023), art. No. 155304. doi: 10.1016/j.apsusc.2022.155304
    [53]
    X. Li, D.M. Xu, D. Zhou, et al., Magnetic array vertically anchored on flexible carbon cloth with “magical angle” for the increased effective absorption bandwidth and improved reflection loss simultaneously, Carbon, 210(2023), art. No. 118046. doi: 10.1016/j.carbon.2023.118046
    [54]
    Y.C. Wang, W. Zhou, G.L. Zeng, et al., Rational design of multi-shell hollow carbon submicrospheres for high-performance microwave absorbers, Carbon, 175(2021), p. 233. doi: 10.1016/j.carbon.2021.01.001
    [55]
    R. Kuchi, H.M. Nguyen, V. Dongquoc, et al., Optimization of FeNi/SWCNT composites by a simple co-arc discharge process to improve microwave absorption performance, J. Alloys Compd., 852(2021), art. No. 156712. doi: 10.1016/j.jallcom.2020.156712
    [56]
    B. Li, T.L. Rong, X.Y. Du, Y.Y. Shen, and Y.Q. Shen, Preparation of Fe3O4 particles with unique structures from nickel slag for enhancing microwave absorption properties, Ceram. Int., 47(2021), No. 13, p. 18848. doi: 10.1016/j.ceramint.2021.03.224
    [57]
    X.P. Lin, S.Y. Cheng, F. Wu, et al., Connecting of conjugate microporous polymer nanoparticles by polypyrrole via sulfonic acid doping to form conductive nanocomposites for excellent microwaves absorption, Compos. Sci. Technol., 221(2022), art. No. 109350. doi: 10.1016/j.compscitech.2022.109350
    [58]
    X.F. Zhou, Z.R. Jia, X.X. Zhang, et al., Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth, J. Mater. Sci. Technol., 87(2021), p. 120. doi: 10.1016/j.jmst.2021.01.073
    [59]
    S.Q. Yang, L. Tang, H.J. Wei, et al. , In-situ construction of volcanic rock-like structures in Yb2O3 modified reduced graphene oxide and their boosted electromagnetic wave absorbing properties, Carbon, 215(2023), art. No. 118445. doi: 10.1016/j.carbon.2023.118445
    [60]
    Y.H. Wu, K.S. Peng, Z.M. Man, et al., A hierarchically three-dimensional CoNi/N-doped porous carbon nanosheets with high performance of electromagnetic wave absorption, Carbon, 188(2022), p. 503. doi: 10.1016/j.carbon.2021.12.025
    [61]
    X. Song, X. Chen, W.Q. Chen, and T.Q. Ao, MOFs-derived Fe, N-co doped porous carbon anchored on activated carbon for enhanced phosphate removal by capacitive deionization, Sep. Purif. Technol., 307(2023), art. No. 122694. doi: 10.1016/j.seppur.2022.122694
    [62]
    Q.H. Gui, Y.T. Hu, S.X. Wang, and L.B. Zhang, Mechanism of synergistic pretreatment with ultrasound and ozone to improve gold and silver leaching percentage, Appl. Surf. Sci., 576(2022), art. No. 151726. doi: 10.1016/j.apsusc.2021.151726
    [63]
    T. Iqbal, M. Ashraf, S. Afsheen, et al., Copper sulfide (CuS) doped with carbon quantum dots (CQD) as an efficient photo catalyst, Opt. Mater., 125(2022), art. No. 112116. doi: 10.1016/j.optmat.2022.112116
    [64]
    Q.L. Chang, C.P. Li, J. Sui, G.I.N. Waterhouse, Z.M. Zhang, and L.M. Yu, Cage-like eggshell membrane-derived Co–Co xS y–Ni/N, S-codoped carbon composites for electromagnetic wave absorption, Chem. Eng. J., 430(2022), art. No. 132650. doi: 10.1016/j.cej.2021.132650
    [65]
    Y.M. Luo, P.F. Yin, G.L. Wu, et al., Porous carbon sphere decorated with Co/Ni nanoparticles for strong and broadband electromagnetic dissipation, Carbon, 197(2022), p. 389. doi: 10.1016/j.carbon.2022.06.084
    [66]
    B. Zhao, Y. Li, H.Y. Ji, et al., Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption, Carbon, 176(2021), p. 411. doi: 10.1016/j.carbon.2021.01.136
    [67]
    F. Zhang, Z.R. Jia, Z. Wang, et al., Tailoring nanoparticles composites derived from metal–organic framework as electromagnetic wave absorber, Mater. Today Phys., 20(2021), art. No. 100475. doi: 10.1016/j.mtphys.2021.100475
    [68]
    D.Q. Zhang, Y.F. Xiong, J.Y. Cheng, et al., Construction of low-frequency and high-efficiency electromagnetic wave absorber enabled by texturing rod-like TiO2 on few-layer of WS2 nanosheets, Appl. Surf. Sci., 548(2021), art. No. 149158. doi: 10.1016/j.apsusc.2021.149158
    [69]
    Y.Y. Wang, Z.H. Zhou, J.L. Zhu, et al., Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption, Composites Part B, 220(2021), art. No. 108985. doi: 10.1016/j.compositesb.2021.108985
    [70]
    S.P. Wang, Q.S. Li, K. Hu, S.N. Wang, Q.C. Liu, and X.K. Kong, A facile synthesis of bare biomass derived holey carbon absorbent for microwave absorption, Appl. Surf. Sci., 544(2021), art. No. 148891. doi: 10.1016/j.apsusc.2020.148891
    [71]
    Y.L. Qi, P.F. Yin, L.M. Zhang, et al., Novel microwave absorber of Ni xMn1– xFe2O4/carbonized chaff (x = 0.3, 0.5, and 0.7) based on biomass, ACS Omega, 4(2019), No. 7, p. 12376. doi: 10.1021/acsomega.9b01568
    [72]
    H.Y. Wang and D.M. Zhu, Design of radar absorbing structure using SiCf/epoxy composites for X band frequency range, Ind. Eng. Chem. Res., 57(2018), No. 6, p. 2139. doi: 10.1021/acs.iecr.7b04905
    [73]
    J.J. Wang, X.Y. Yue, Z.K. Xie, A. Abudula, and G.Q. Guan, MOFs-derived transition metal sulfide composites for advanced sodium ion batteries, Energy Storage Mater., 41(2021), p. 404. doi: 10.1016/j.ensm.2021.06.025
    [74]
    F. Wang, C. Bai, L. Chen, and Y. Yu, Boron nitride nanocomposites for microwave absorption: A review, Mater. Today Nano, 13(2021), art. No. 100108. doi: 10.1016/j.mtnano.2020.100108
    [75]
    Z.F. Tong, Q.R. Yao, J.Q. Deng, et al., Effects of Ni-doping on microstructure, magnetic and microwave absorption properties of CoFe2O4, Mater. Sci. Eng. B, 268(2021), art. No. 115092. doi: 10.1016/j.mseb.2021.115092
    [76]
    Z.Y. Tong, Y.X. Bi, M.L. Ma, et al., Fabrication of flower-like surface Ni@Co3O4 nanowires anchored on RGO nanosheets for high-performance microwave absorption, Appl. Surf. Sci., 565(2021), art. No. 150483. doi: 10.1016/j.apsusc.2021.150483
    [77]
    C. Tian, Q.R. Yao, Z.F. Tong, et al., Effects of Sm-doping on microstructure, magnetic and microwave absorption properties of BiFeO3, J. Rare Earths, 39(2021), No. 7, p. 835. doi: 10.1016/j.jre.2020.05.003
    [78]
    J.Q. Tao, J.T. Zhou, Z.J. Yao, et al., Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties, Carbon, 172(2021), p. 542. doi: 10.1016/j.carbon.2020.10.062
    [79]
    G. Surender, F.S. Omar, S. Bashir, M. Pershaanaa, S. Ramesh, and K. Ramesh, Growth of nanostructured cobalt sulfide-based nanocomposite as faradaic binder-free electrode for supercapattery, J. Energy Storage, 39(2021), art. No. 102599. doi: 10.1016/j.est.2021.102599
    [80]
    Q.F. Ban, Y. Li, L.W. Li, et al., Amorphous carbon engineering of hierarchical carbonaceous nanocomposites toward boosted dielectric polarization for electromagnetic wave absorption, Carbon, 201(2023), p. 1011. doi: 10.1016/j.carbon.2022.10.017
    [81]
    J.W. Wen, X.X. Li, G. Chen, Z.N. Wang, X.J. Zhou, and H.J. Wu, Controllable adjustment of cavity of core-shelled Co3O4@NiCo2O4 composites via facile etching and deposition for electromagnetic wave absorption, J. Colloid Interface Sci., 594(2021), p. 424. doi: 10.1016/j.jcis.2021.03.056
    [82]
    X. Yang, X.N. Pang, M. Cao, X.G. Liu, and X.J. Li, Efficient microwave absorption induced by hierarchical pores of reed-derived ultralight carbon materials, Ind. Crops Prod., 171(2021), art. No. 113814. doi: 10.1016/j.indcrop.2021.113814
    [83]
    W. Yang, B. Jiang, S. Che, L. Yan, Z.X. Li, and Y.F. Li, Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms, New Carbon Mater., 36(2021), No. 6, p. 1016. doi: 10.1016/S1872-5805(21)60095-1
    [84]
    X.Q. Xu, F.T. Ran, Z.M. Fan, et al., Microstructural engineering of flexible and broadband microwave absorption films with hierarchical superstructures derived from bimetallic metal–organic framework, Carbon, 178(2021), p. 320. doi: 10.1016/j.carbon.2021.02.104
    [85]
    X.X. Luo, K.K. Zhang, Y.Y. Zhou, H.J. Wu, and H. Xie, In situ construction of Fe3Al@Al2O3 core–shell particles with excellent electromagnetic absorption, J. Colloid Interface Sci., 611(2022), p. 306. doi: 10.1016/j.jcis.2021.12.084
    [86]
    Z.Y. Tong, Z.J. Liao, Y.Y. Liu, et al., Hierarchical Fe3O4/Fe@C@MoS2 core–shell nanofibers for efficient microwave absorption, Carbon, 179(2021), p. 646. doi: 10.1016/j.carbon.2021.04.051
    [87]
    W.D. Zhang, X. Zhang, Q. Zhu, Y. Zheng, L.F. Liotta, and H.J. Wu, High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber, J. Colloid Interface Sci., 586(2021), p. 457. doi: 10.1016/j.jcis.2020.10.109
    [88]
    X.X. Sun, Z. Wang, S.S. Wang, et al., Ultrabroad-band and low-frequency microwave absorption based on activated waxberry metamaterial, Chem. Eng. J., 422(2021), art. No. 130142. doi: 10.1016/j.cej.2021.130142
    [89]
    H. Sun, X. Zhang, F. Yan, H.R. Yuan, C.L. Zhu, and Y.J. Chen, Nanointerface engineering of cobalt sulfide/manganese sulfate hollow spheres for electromagnetic wave absorption, Appl. Surf. Sci., 554(2021), art. No. 149238. doi: 10.1016/j.apsusc.2021.149238
    [90]
    G.L. Song, K.K. Yang, L.X. Gai, et al., ZIF-67/CMC-derived 3D N-doped hierarchical porous carbon with in situ encapsulated bimetallic sulfide and Ni NPs for synergistic microwave absorption, Composites Part A, 149(2021), art. No. 106584. doi: 10.1016/j.compositesa.2021.106584
    [91]
    L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core–shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504. doi: 10.1007/s12613-022-2509-1
    [92]
    G.L. Song, L.X. Gai, K.K. Yang, et al., A versatile N-doped honeycomb-like carbonaceous aerogels loaded with bimetallic sulfide and oxide for superior electromagnetic wave absorption and supercapacitor applications, Carbon, 181(2021), p. 335. doi: 10.1016/j.carbon.2021.05.044
    [93]
    H.G. Shiraz, X. Crispin, and M. Berggren, Transition metal sulfides for electrochemical hydrogen evolution, Int. J. Hydrogen Energy, 46(2021), No. 47, p. 24060. doi: 10.1016/j.ijhydene.2021.04.194
    [94]
    P.F. Yin, Y.M. Luo, D. Lan, et al., Structural engineering of porous biochar loaded with ferromagnetic/anti-ferromagnetic NiCo2O4/CoO for excellent electromagnetic dissipation with flexible and self-cleaning properties, J. Mater. Sci. Technol., 180(2024), p. 12. doi: 10.1016/j.jmst.2023.08.057
    [95]
    Y. Liu, J.N. Qin, L.L. Lu, J. Xu, and X.L. Su, Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 525. doi: 10.1007/s12613-022-2491-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1768) PDF Downloads(50) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return