Cite this article as: |
Yuying Huo, Zhengyan Wang, Yanlan Zhang, and Yongzhen Wang, High-entropy ferrite with tunable magnetic properties for excellent microwave absorption, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2883-y |
Yanlan Zhang E-mail: zhangyanlan@tyut.edu.cn
Yongzhen Wang E-mail: wangyongzhen@tyut.edu.cn
[1] |
A. Namdari and Z.J. Li, A review of entropy measures for uncertainty quantification of stochastic processes, Adv. Mech. Eng., 11(2019), No. 6, p. 1.
|
[2] |
J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
|
[3] |
S. Akrami, P. Edalati, M. Fuji, and K. Edalati, High-entropy ceramics: Review of principles, production and applications, Mater. Sci. Eng. R, 146(2021), art. No. 100644. doi: 10.1016/j.mser.2021.100644
|
[4] |
Y. Xue, X.Q. Zhao, Z.Y. Bu, et al., Blocking effect in Nb-engineered high-entropy oxides with strengthened grain boundary corrosion resistance, Chem. Eng. J., 457(2023), art. No. 141346. doi: 10.1016/j.cej.2023.141346
|
[5] |
D. Fan, X. Zhong, Z.Z. Zhang, et al., Investigation on behavior and mechanism of enhanced water vapor corrosion resistance for (Lu0.25Yb0.25Er0.25Y0.25)2SiO5 environmental barrier coating, J. Eur. Ceram. Soc., 43(2023), No. 8, p. 3737. doi: 10.1016/j.jeurceramsoc.2023.02.063
|
[6] |
S.L. Liew, X.P. Ni, F.X. Wei, et al., High-entropy fluorite oxides: Atomic stabiliser effects on thermal-mechanical properties, J. Eur. Ceram. Soc., 42(2022), No. 14, p. 6608. doi: 10.1016/j.jeurceramsoc.2022.07.026
|
[7] |
T.S. Park, N.K. Adomako, A.N. Ashong, Y.K. Kim, S.M. Yang, and J.H. Kim, Interfacial structure and physical properties of high-entropy oxide coatings prepared via atmospheric plasma spraying, Coatings, 11(2021), No. 7, art. No. 755. doi: 10.3390/coatings11070755
|
[8] |
D.B. Zhang, Y. Yu, X.L. Feng, Z.Y. Tian, and R.Q. Song, Thermal barrier coatings with high-entropy oxide as a top coat, Ceram. Int., 48(2022), No. 1, p. 1349. doi: 10.1016/j.ceramint.2021.09.219
|
[9] |
B.B. Yue, W.H. Dai, X.L. Zhang, et al., Deformation behavior of high-entropy oxide (Mg, Co, Ni, Cu, Zn)O under extreme compression, Scripta Mater., 219(2022), art. No. 114879. doi: 10.1016/j.scriptamat.2022.114879
|
[10] |
S.X. Liu, M.R. Du, Y.F. Ge, et al., Enhancement of high entropy oxide (La0.2Nd0.2Sm0.2Gd0.2Y0.2)2Zr2O7 mechanical and photocatalytic properties via Eu doping, J. Mater. Sci., 57(2022), No. 16, p. 7863. doi: 10.1007/s10853-022-07124-9
|
[11] |
C.M. Rost, E. Sachet, T. Borman, et al., Entropy-stabilized oxides, Nat. Commun., 6(2015), art. No. 8485. doi: 10.1038/ncomms9485
|
[12] |
X.H. Liang, J.Y. Hwang, and Y.K. Sun, Practical cathodes for sodium-ion batteries: Who will take the crown?, Adv. Energy Mater., 13(2023), No. 37, art. No. 2301975. doi: 10.1002/aenm.202301975
|
[13] |
K.H. Tian, H. He, X. Li, et al., Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries, J. Mater. Chem. A, 10(2022), No. 28, p. 14943. doi: 10.1039/D2TA02451A
|
[14] |
X. Li, J.X. Ma, K.P. Chen, C.W. Li, X.W. Zhang, and L.N. An, Design and investigate the electrical properties of Pb(Mg0.2Zn0.2Nb0.2Ta0.2W0.2)O3–PbTiO3 high-entropy ferroelectric ceramics, Ceram. Int., 48(2022), No. 9, p. 12848. doi: 10.1016/j.ceramint.2022.01.156
|
[15] |
Q. Yang, G.Q. Wang, H.D. Wu, et al., A high-entropy perovskite cathode for solid oxide fuel cells, J. Alloys Compd., 872(2021), art. No. 159633. doi: 10.1016/j.jallcom.2021.159633
|
[16] |
Q.B. An, S. Li, J.J. Zhou, S.J. Ji, Z.S. Wen, and J.C. Sun, Novel spinel multicomponent high-entropy oxide as anode for lithium-ion batteries with excellent electrochemical performance, Adv. Eng. Mater., 25(2023), No. 20, art. No. 2300585. doi: 10.1002/adem.202300585
|
[17] |
C. Liu, J.Q. Bi, L.L. Xie, X.C. Gao, and L.J. Meng, Preparation and electrochemical properties of two novel high entropy spinel oxides (MgTiZnNiFe)3O4 and (CoTiZnNiFe)3O4 by solid state reaction, Mater. Today Commun., 35(2023), art. No. 106315. doi: 10.1016/j.mtcomm.2023.106315
|
[18] |
C. Cui, R.H. Guo, E.H. Ren, et al., MXene-based rGO/Nb2CT x/Fe3O4 composite for high absorption of electromagnetic wave, Chem. Eng. J., 405(2021), art. No. 126626. doi: 10.1016/j.cej.2020.126626
|
[19] |
M. Derakhshani, E. Taheri-Nassaj, M. Jazirehpour, and S.M. Masoudpanah, Structural, magnetic, and gigahertz-range electromagnetic wave absorption properties of bulk Ni–Zn ferrite, Sci. Rep., 11(2021), No. 1, art. No. 9468. doi: 10.1038/s41598-021-88930-0
|
[20] |
B. Zhao, Y.Q. Du, Z.K. Yan, et al., Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties, Adv. Funct. Mater., 33(2023), No. 1, art. No. 2209924. doi: 10.1002/adfm.202209924
|
[21] |
J.B. Ma, B. Zhao, H.M. Xiang, et al., High-entropy spinel ferrites MFe2O4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) with tunable electromagnetic properties and strong microwave absorption, J. Adv. Ceram., 11(2022), No. 5, p. 754. doi: 10.1007/s40145-022-0569-3
|
[22] |
N. Aggarwal and S.B. Narang, Effect of co-substitution of Co–Zr on electromagnetic properties of Ni–Zn spinel ferrites at microwave frequencies, J. Alloys Compd., 866(2021), art. No. 157461. doi: 10.1016/j.jallcom.2020.157461
|
[23] |
Z. Sun, Y.J. Zhao, C. Sun, Q. Ni, C.Z. Wang, and H.B. Jin, High entropy spinel-structure oxide for electrochemical application, Chem. Eng. J., 431(2022), art. No. 133448. doi: 10.1016/j.cej.2021.133448
|
[24] |
H. Nakamura, K. Shinozaki, T. Okumura, K. Nomura, and T. Akai, Massive red shift of Ce3+ in Y3Al5O12 incorporating super-high content of Ce, RSC Adv., 10(2020), No. 21, p. 12535. doi: 10.1039/D0RA01381A
|
[25] |
Y.Y. Zheng, Z.W. Ge, H.C. Sun, et al., The role of oxygen vacancy in CaO–Ca12Al14O33 materials derived from hydrocalumite for enhanced CO2 capture cyclic performance, Chem. Eng. J., 481(2024), art. No. 147955. doi: 10.1016/j.cej.2023.147955
|
[26] |
R. Han, W. Li, W.W. Pan, M.G. Zhu, D. Zhou, and F.S. Li, 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method, Sci. Rep., 4(2014), art. No. 7493. doi: 10.1038/srep07493
|
[27] |
M.K. He, J.W. Hu, H. Yan, et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity, Adv. Funct. Mater., (2024), art. No. 2316691.
|
[28] |
M.D. Hossain, A.T.M.K. Jamil, M.S. Hossain, et al., Investigation on structure, thermodynamic and multifunctional properties of Ni–Zn–Co ferrite for Gd3+ substitution, RSC Adv., 12(2022), No. 8, p. 4656. doi: 10.1039/D1RA04762K
|
[29] |
Z.F. Tong, Q.R. Yao, J.Q. Deng,et al., Effects of Ni-doping on microstructure, magnetic and microwave absorption properties of CoFe2O4, Mater. Sci. Eng. B, 268(2021), art. No. 115092. doi: 10.1016/j.mseb.2021.115092
|
[30] |
Y. Liu, X.F. Zhou, Z.R. Jia, H.J. Wu, and G.L. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites, Adv. Funct. Mater., 32(2022), No. 34, art. No. 2204499. doi: 10.1002/adfm.202204499
|
[31] |
M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application, Adv. Sci.,8(2021), No. 8, art. No. 2004640. doi: 10.1002/advs.202004640
|
[32] |
Y. Liu, J.N. Qin, L.L. Lu, J. Xu, and X.L. Su, Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 525. doi: 10.1007/s12613-022-2491-7
|
[33] |
F.H. Mohammadabadi, S.M. Masoudpanah, S. Alamolhoda, and H.R. Koohdar, Electromagnetic microwave absorption properties of high entropy spinel ferrite ((MnNiCuZn)1− xCo xFe2O4)/graphene nanocomposites, J. Mater. Res. Technol., 14(2021), p. 1099. doi: 10.1016/j.jmrt.2021.07.018
|
[34] |
P.P. Mohapatra, H.K. Singh, M.S.R.N. Kiran, and P. Dobbidi, Co substituted Ni–Zn ferrites with tunable dielectric and magnetic response for high-frequency applications, Ceram. Int., 48(2022), No. 19, p. 29217. doi: 10.1016/j.ceramint.2022.05.197
|
[35] |
G.H. Dai, R.X. Deng, X. You, T. Zhang, Y. Yu, and L.X. Song, Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in situ dual phases, J. Mater. Sci. Technol., 116(2022), p. 11. doi: 10.1016/j.jmst.2021.11.032
|
[36] |
X. Feng, P.F. Yin, L.M. Zhang, et al., Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 559. doi: 10.1007/s12613-022-2488-2
|
[37] |
D.D. Wu, H.X. Zhang, Z.Y. Wang, Y.L. Zhang, and Y.Z. Wang, 3D porous NiCo2(CO3)3/reduced graphene oxide aerogel with heterogeneous interfaces for high-efficiency microwave absorption, New Carbon Mater., 38(2023), No. 6, p. 1035. doi: 10.1016/S1872-5805(23)60780-2
|
[38] |
G.G. Guan, G.J. Gao, J. Xiang, J.N. Yang, X.Q. Li, and K.Y. Zhang, A novel three-dimensional Fe3SnC/C hybrid nanofiber absorber for lightweight and highly-efficient microwave absorption, Phys. Chem. Chem. Phys., 22(2020), No. 45, p. 26104. doi: 10.1039/D0CP04594B
|
[39] |
L. Kong, S.H. Luo, S.Y. Zhang, G.Q. Zhang, and Y. Liang, Ultralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 570. doi: 10.1007/s12613-022-2476-6
|
[40] |
H.J. Wu, D. Lan, B. Li, et al., High-entropy alloy@air@Ni–NiO core–shell microspheres for electromagnetic absorption applications, Composites Part B, 179(2019), art. No. 107524. doi: 10.1016/j.compositesb.2019.107524
|
[41] |
M. Tahamipoor and H. Hekmatara, Superior microwave absorption ability of CuFe2O4/MWCNT at whole Ku-band and half X-band, Phys. Chem. Chem. Phys., 25(2023), No. 18, p. 13145. doi: 10.1039/D3CP00897E
|
[42] |
D. Mao, Z. Zhang, M. Yang, Z.M. Wang, R.B. Yu, and D. Wang, Constructing BaTiO3/TiO2@polypyrrole composites with hollow multishelled structure for enhanced electromagnetic wave absorbing properties, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 581. doi: 10.1007/s12613-022-2556-7
|
[43] |
W.M. Zhang, H.M. Xiang, F.Z. Dai, B. Zhao, S.J. Wu, and Y.C. Zhou, Achieving ultra-broadband electromagnetic wave absorption in high-entropy transition metal carbides (HE TMCs), J. Adv. Ceram., 11(2022), No. 4, p. 545. doi: 10.1007/s40145-021-0554-2
|
[44] |
H.X. Zhang, Z.Y. Wang, D.D. Wu, Y.L. Zhang, and Y.Z. Wang, Carboxymethyl cellulose-derived porous carbon aerogel decorated with Fe3O4–Fe nanoparticles for tunable microwave absorption, Diam. Relat. Mater., 139(2023), art. No. 110405. doi: 10.1016/j.diamond.2023.110405
|
[45] |
Y.F. Zhang, Z. Ji, K. Chen, C.C. Jia, S.W. Yang, and M.Y. Wang, Preparation and radar-absorbing properties of Al2O3/TiO2/Fe2O3/Yb2O3 composite powder, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 216. doi: 10.1007/s12613-017-1398-1
|
[46] |
F.S. Li, N.N. Wu, H. Kimura, et al., Initiating binary metal oxides microcubes electromagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation, Nano-Micro Lett., 15(2023), art. No. 220. doi: 10.1007/s40820-023-01197-0
|
[47] |
B. Quan, X.H. Liang, G.B. Ji, et al., Dielectric polarization in electromagnetic wave absorption: Review and perspective, J. Alloys Compd., 728(2017), p. 1065. doi: 10.1016/j.jallcom.2017.09.082
|
[48] |
X. Meng, W.J. Lei, W.W. Yang, Y.Q. Liu, and Y.S. Yu, Fe3O4 nanoparticles coated with ultra-thin carbon layer for polarization-controlled microwave absorption performance, J. Colloid Interface Sci., 600(2021), p. 382. doi: 10.1016/j.jcis.2021.05.055
|
[49] |
G.X. Tong, J.H. Yuan, W.H. Wu, et al., Flower-like Co superstructures: Morphology and phase evolution mechanism and novel microwave electromagnetic characteristics, CrystEngComm, 14(2012), No. 6, p. 2071. doi: 10.1039/c2ce05910j
|
[50] |
H.P. Lv, C. Wu, F.X. Qin, H.X. Peng, and M. Yan, Extra-wide bandwidth via complementary exchange resonance and dielectric polarization of sandwiched FeNi@SnO2 nanosheets for electromagnetic wave absorption, J. Mater. Sci. Technol., 90(2021), p. 1. doi: 10.1016/j.jmst.2020.12.083
|
[51] |
Y. Mu, Z.H. Ma, H.S. Liang, L.M. Zhang, and H.J. Wu, Ferrite-based composites and morphology-controlled absorbers, Rare Met., 41(2022), No. 9, p. 2943. doi: 10.1007/s12598-022-02045-7
|
[52] |
X.F. Liu, C.C. Hao, L.H. He, et al., Yolk–shell structured Co–C/void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption, Nano Res., 11(2018), No. 8, p. 4169. doi: 10.1007/s12274-018-2006-z
|
[53] |
L.Q. Jin, P.S. Yi, L. Wan, et al., Thickness-controllable synthesis of MOF-derived Ni@N-doped carbon hexagonal nanoflakes with dielectric–magnetic synergy toward wideband electromagnetic wave absorption, Chem. Eng. J., 427(2022), art. No. 130940. doi: 10.1016/j.cej.2021.130940
|
[54] |
J. Gao, Z.J. Ma, F.L. Liu, X.Y. Weng, and K.Y. Meng, Preparation and microwave absorption properties of Gd–Co ferrite@silica@carbon multilayer core–shell structure composites, Chem. Eng. J., 446(2022), art. No. 137157. doi: 10.1016/j.cej.2022.137157
|