Cite this article as: |
Qiuhong Liu, Qing Du, Xiaobin Zhang, Yuan Wu, Andrey A. Rempel, Xiangyang Peng, Xiongjun Liu, Hui Wang, Wenli Song, and Zhaoping Lü, Characterization of local chemical ordering and deformation behavior in high entropy alloys by transmission electron microscopy, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 877-886. https://doi.org/10.1007/s12613-024-2884-x |
Xiaobin Zhang E-mail: zhangxb@ustb.edu.cn
Zhaoping Lü E-mail: luzp@ustb.edu.cn
[1] |
Y. Zhang, T.T. Zuo, Z. Tang, et al., Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1. doi: 10.1016/j.pmatsci.2013.10.001
|
[2] |
J.J. Yi, F.Y. Cao, M.Q. Xu, L. Yang, L. Wang, and L. Zeng, Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1231. doi: 10.1007/s12613-020-2214-x
|
[3] |
J. Wu, H.G. Zhu, and Z.H. Xie, Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 707. doi: 10.1007/s12613-022-2567-4
|
[4] |
N. Xiao, X. Guan, D. Wang, et al., Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1667. doi: 10.1007/s12613-023-2641-6
|
[5] |
Z.P. Lu, Z.F. Lei, H.L. Huang, et al., Deformation behavior and toughening of high-entropy alloys, Acta Metall. Sin., 54(2018), No. 11, p. 1553.
|
[6] |
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, High-entropy alloy: Challenges and prospects, Mater. Today, 19(2016), No. 6, p. 349. doi: 10.1016/j.mattod.2015.11.026
|
[7] |
D. Saha, E.D. Bøjesen, A.H. Mamakhel, M. Bremholm, and B.B. Iversen, In situ PDF study of the nucleation and growth of intermetallic PtPb nanocrystals, Chemnanomat, 3(2017), No. 7, p. 472. doi: 10.1002/cnma.201700069
|
[8] |
S. Maiti and W. Steurer, Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy, Acta Mater., 106(2016), p. 87. doi: 10.1016/j.actamat.2016.01.018
|
[9] |
L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.K. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw, Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy, Nat. Commun., 6(2015), art. No. 5964. doi: 10.1038/ncomms6964
|
[10] |
D. Han, X.J. Guan, Y. Yan, F. Shi, and X.W. Li, Anomalous recovery of work hardening rate in Cu–Mn alloys with high stacking fault energies under uniaxial compression, Mater. Sci. Eng. A, 743(2019), p. 745. doi: 10.1016/j.msea.2018.11.103
|
[11] |
N. Clément, D. Caillard, and J.L. Martin, Heterogeneous deformation of concentrated NiCr F.C.C. alloys: Macroscopic and microscopic behaviour, Acta Metall., 32(1984), No. 6, p. 961. doi: 10.1016/0001-6160(84)90034-8
|
[12] |
X.F. Chen, Z.C. Wang, and X.Y. Zhong, Developments of energy-filtered transmission electron microscopy, J. Chin. Electron Microsc. Soc., 37(2018), No. 5, p. 540.
|
[13] |
A. Tamm, A. Aabloo, M. Klintenberg, M. Stocks, and A. Caro, Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys, Acta Mater., 99(2015), p. 307. doi: 10.1016/j.actamat.2015.08.015
|
[14] |
R.P. Zhang, S.T. Zhao, C. Ophus, et al., Direct imaging of short-range order and its impact on deformation in Ti–6Al, Sci. Adv., 5(2019), No. 12, art. No. eaax2799. doi: 10.1126/sciadv.aax2799
|
[15] |
Z.F. Lei, X.J. Liu, Y. Wu, et al., Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563(2018), p. 546. doi: 10.1038/s41586-018-0685-y
|
[16] |
E. Antillon, C. Woodward, S.I. Rao, B. Akdim, and T.A. Parthasarathy, Chemical short range order strengthening in a model FCC high entropy alloy, Acta Mater., 190(2020), p. 29. doi: 10.1016/j.actamat.2020.02.041
|
[17] |
Q.J. Li, H. Sheng, and E. Ma, Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways, Nat. Commun., 10(2019), No. 1, art. No. 3563. doi: 10.1038/s41467-019-11464-7
|
[18] |
W. Guo, W. Dmowski, J.Y. Noh, P. Rack, P.K. Liaw, and T. Egami, Local atomic structure of a high-entropy alloy: An X-ray and neutron scattering study, Metall. Mater. Trans. A, 44(2013), No. 5, p. 1994. doi: 10.1007/s11661-012-1474-0
|
[19] |
M.Y. Jiao, Z.F. Lei, Y. Wu, et al., Manipulating the ordered oxygen complexes to achieve high strength and ductility in medium-entropy alloys, Nat. Commun., 14(2023), No. 1, art. No. 806. doi: 10.1038/s41467-023-36319-0
|
[20] |
I. Lazić and E.G.T. Bosch, Chapter three–Analytical review of direct stem imaging techniques for thin samples, [in] P.W. Hawkes, ed., Advances in Imaging and Electron Physics, Volume 199, 2017, p. 75.
|
[21] |
I. Lazic, E.G. Bosch, S. Lazar, M. Wirix, and E. Yücelen, Integrated differential phase contrast (iDPC)–Direct phase imaging in STEM for thin samples, Microsc. Microanal., 22(2016), No. S3, p. 36. doi: 10.1017/S1431927616001033
|
[22] |
E. Yücelen, I. Lazić, and E.G.T. Bosch, Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution, Sci. Rep., 8(2018), No. 1, art. No. 2676. doi: 10.1038/s41598-018-20377-2
|
[23] |
Y. Zhang, W.B. Wang, W.D. Xing, et al., Effect of oxygen interstitial ordering on multiple order parameters in rare earth ferrite, Phys. Rev. Lett., 123(2019), No. 24, art. No. 247601. doi: 10.1103/PhysRevLett.123.247601
|
[24] |
Q.Q. Ding, Y. Zhang, X. Chen, et al., Tuning element distribution, structure and properties by composition in high-entropy alloys, Nature, 574(2019), p. 223. doi: 10.1038/s41586-019-1617-1
|
[25] |
S. Dasari, A. Sharma, C. Jiang, et al. Srinivasan, and R. Banerjee, Exceptional enhancement of mechanical properties in high-entropy alloys via thermodynamically guided local chemical ordering, Proc. Natl. Acad. Sci. U.S.A., 120(2023), No. 23, art. No. e2211787120. doi: 10.1073/pnas.2211787120
|
[26] |
L. Wang, J. Ding, S.S. Chen, et al., Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys, Nat. Mater., 22(2023), No. 8, p. 950. doi: 10.1038/s41563-023-01517-0
|
[27] |
X.F. Chen, Q. Wang, Z.Y. Cheng, et al., Direct observation of chemical short-range order in a medium-entropy alloy, Nature, 592(2021), No. 7856, p. 712. doi: 10.1038/s41586-021-03428-z
|
[28] |
H.Z. Sha, J.Z. Cui, and R. Yu, Deep sub-angstrom resolution imaging by electron ptychography with misorientation correction, Sci. Adv., 8(2022), No. 19, art. No. eabn2275. doi: 10.1126/sciadv.abn2275
|
[29] |
Z. Chen, Y. Jiang, Y.T. Shao, et al., Electron ptychography achieves atomic-resolution limits set by lattice vibrations, Science, 372(2021), No. 6544, p. 826. doi: 10.1126/science.abg2533
|
[30] |
C. Liu, J.Z. Cui, Z.Y. Cheng, et al., Direct observation of oxygen atoms taking tetrahedral interstitial sites in medium-entropy body-centered-cubic solutions, Adv. Mater., 35(2023), No. 13, art. No. e2209941. doi: 10.1002/adma.202209941
|
[31] |
S. Moniri, Y. Yang, J. Ding, et al., Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys, Nature, 624(2023), No. 7992, p. 564. doi: 10.1038/s41586-023-06785-z
|
[32] |
Y. Yang, J.H. Zhou, F. Zhu, et al., Determining the three-dimensional atomic structure of an amorphous solid, Nature, 592(2021), No. 7852, p. 60. doi: 10.1038/s41586-021-03354-0
|
[33] |
S. Tang, T.Z. Xin, W.Q. Xu, et al., Precipitation strengthening in an ultralight magnesium alloy, Nat. Commun., 10(2019), No. 1, art. No. 1003. doi: 10.1038/s41467-019-08954-z
|
[34] |
Z.P. Xiong, I. Timokhina, and E. Pereloma, Clustering, nano-scale precipitation and strengthening of steels, Prog. Mater. Sci, 118(2021), art. No. 100764. doi: 10.1016/j.pmatsci.2020.100764
|
[35] |
X.L. Zhou, Z.Q. Feng, L.L. Zhu, et al., High-pressure strengthening in ultrafine-grained metals, Nature, 579(2020), No. 7797, p. 67. doi: 10.1038/s41586-020-2036-z
|
[36] |
J.P. Buban, K. Matsunaga, J. Chen, et al., Grain boundary strengthening in alumina by rare earth impurities, Science, 311(2006), No. 5758, p. 212. doi: 10.1126/science.1119839
|
[37] |
H.Y. Lin, P. Hua, K. Huang, Q. Li, and Q.P. Sun, Grain boundary and dislocation strengthening of nanocrystalline NiTi for stable elastocaloric cooling, Scripta Mater., 226(2023), art. No. 115227. doi: 10.1016/j.scriptamat.2022.115227
|
[38] |
Z.D. Pan, K. Wu, X.D. Zhao, Y. Lin, and W.K. Zhang, Development of ultra high strength non-oriented silicon steel by dislocation strengthening, Iron Steel, 58(2023), No. 3, p. 111.
|
[39] |
M.S. Lucas, G.B. Wilks, L. Mauger, et al., Absence of long-range chemical ordering in equimolar FeCoCrNi, Appl. Phys. Lett., 100(2012), No. 25, art. No. 251907. doi: 10.1063/1.4730327
|
[40] |
J.W. Yeh, S.Y. Chang, Y. der Hong, S.K. Chen, and S.J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys., 103(2007), No. 1, p. 41. doi: 10.1016/j.matchemphys.2007.01.003
|
[41] |
S.T. Zhao, Z.Z. Li, C.Y. Zhu, et al., Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy, Sci. Adv., 7(2021), No. 5, art. No. eabb3108. doi: 10.1126/sciadv.abb3108
|
[42] |
T. Xiong, W.F. Yang, S.J. Zheng, et al., Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1, J. Mater. Sci. Technol., 65(2021), p. 216. doi: 10.1016/j.jmst.2020.04.073
|
[43] |
Z.J. Zhang, M.M. Mao, J.W. Wang, et al., Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nat. Commun., 6(2015), art. No. 10143. doi: 10.1038/ncomms10143
|
[44] |
S.F. Liu, Y. Wu, H.T. Wang, et al., Stacking fault energy of face-centered-cubic high entropy alloys, Intermetallics, 93(2018), p. 269. doi: 10.1016/j.intermet.2017.10.004
|
[45] |
Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, and D. Raabe, Design of a twinning-induced plasticity high entropy alloy, Acta Mater., 94(2015), p. 124. doi: 10.1016/j.actamat.2015.04.014
|
[46] |
K. Jiang, Q. Zhang, J.G. Li, et al., Abnormal hardening and amorphization in an FCC high entropy alloy under extreme uniaxial tension, Int. J. Plast, 159(2022), art. No. 103463. doi: 10.1016/j.ijplas.2022.103463
|
[47] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater., 128(2017), p. 292. doi: 10.1016/j.actamat.2017.02.036
|
[48] |
H. Wang, D.K. Chen, X.H. An, et al., Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy, Sci. Adv., 7(2021), No. 14, art. No. eabe3105. doi: 10.1126/sciadv.abe3105
|
[49] |
R.M. Niu, X.H. An, L.L. Li, Z.F. Zhang, Y.W. Mai, and X.Z. Liao, Mechanical properties and deformation behaviours of submicron-sized Cu–Al single crystals, Acta Mater., 223(2022), art. No. 117460. doi: 10.1016/j.actamat.2021.117460
|
[50] |
J.Q. Ding, J.D. Zuo, Y.Q. Wang, et al., Progress in the local chemical short-range order of multi-principal alloys, Rare Met. Mater. Eng., 52(2023), No. 4, p. 1507.
|
[51] |
L.T.W. Smith, Y.Q. Su, S.Z. Xu, A. Hunter, and I.J. Beyerlein, The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy, Int. J. Plast., 134(2020), art. No. 102850. doi: 10.1016/j.ijplas.2020.102850
|
[52] |
Y.K. Zhao, J.M. Park, J.I. Jang, and U. Ramamurty, Bimodality of incipient plastic strength in face-centered cubic high-entropy alloys, Acta Mater., 202(2021), p. 124. doi: 10.1016/j.actamat.2020.10.066
|
[53] |
D. Han, Z.Y. Wang, Y. Yan, F. Shi, and X.W. Li, A good strength-ductility match in Cu–Mn alloys with high stacking fault energies: Determinant effect of short range ordering, Scripta Mater., 133(2017), p. 59. doi: 10.1016/j.scriptamat.2017.02.010
|
[54] |
Y.J. Zhang, D. Han, and X.W. Li, A unique two-stage strength-ductility match in low solid-solution hardening Ni–Cr alloys: Decisive role of short range ordering, Scripta Mater., 178(2020), p. 269. doi: 10.1016/j.scriptamat.2019.11.049
|
[55] |
Y.Q. Bu, Y. Wu, Z.F. Lei, et al., Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys, Mater. Today, 46(2021), p. 28. doi: 10.1016/j.mattod.2021.02.022
|
[56] |
V. Gerold and H.P. Karnthaler, On the origin of planar slip in f.c.c. alloys, Acta Metall., 37(1989), No. 8, p. 2177. doi: 10.1016/0001-6160(89)90143-0
|
[57] |
S.I. Rao, C. Varvenne, C. Woodward, et al., Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy, Acta Mater., 125(2017), p. 311. doi: 10.1016/j.actamat.2016.12.011
|
[58] |
Z.F. He, Y.X. Guo, L.F. Sun, et al., Interstitial-driven local chemical order enables ultrastrong face-centered cubic multicomponent alloys, Acta Mater., 243(2023), art. No. 118495. doi: 10.1016/j.actamat.2022.118495
|
[59] |
F. Zhang, Y. Wu, H.B. Lou, et al. Polymorphism in a high-entropy alloy, Nat. Commun., 8(2017), art. No. 15687. doi: 10.1038/ncomms15687
|
[60] |
J. Ding, Q. Yu, M. Asta, and R.O. Ritchie, Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys, Proc. Natl. Acad. Sci. U.S.A., 115(2018), No. 36, p. 8919. doi: 10.1073/pnas.1808660115
|
[61] |
R.P. Zhang, S.T. Zhao, J. Ding, et al., Short-range order and its impact on the CrCoNi medium-entropy alloy, Nature, 581(2020), No. 7808, p. 283. doi: 10.1038/s41586-020-2275-z
|
[62] |
Z.C. Xie, W.R. Jian, S.Z. Xu, et al., Phase transition in medium entropy alloy CoCrNi under quasi-isentropic compression, Int. J. Plast., 157(2022), No. 1, art. No. 103389. doi: 10.1016/j.ijplas.2022.103389
|
[63] |
F. Walsh, M.W. Zhang, R.O. Ritchie, A.M. Minor, and M. Asta, Extra electron reflections in concentrated alloys do not necessitate short-range order, Nat. Mater., 22(2023), No. 8, p. 926. doi: 10.1038/s41563-023-01570-9
|
[64] |
E. Frely, B. Beuneu, A. Barbu, and G. Jaskierowicz, Short and long-range ordering of (Ni0.67Cr0.33)1− xFe x alloys under electron irradiation, MRS Online Proc. Lib., 439(1996), No. 1, p. 373. doi: 10.1557/PROC-439-373
|
[65] |
V.V. Sagaradze, I.I. Kositsyna, V.L. Arbuzov, V.A. Shabashov, and Y.I. Filippov, Phase transformations in Fe–Cr alloys upon thermal aging and electron irradiation, Phys. Met. Metall., 92(2001), No. 5, p. 508.
|
[66] |
S. Banerjee, In-situ studies on phase transformations under electron irradiation in a high voltage electron microscope, Sadhana, 28(2003), No. 3, p. 799. doi: 10.1007/BF02706460
|