Xinxin Nie, Qian Yin, Manchao He, Qi Wang, Hongwen Jing, Bowen Zheng, Bo Meng, Tianci Deng, Zheng Jiang, and Jiangyu Wu, Shear mechanical properties and fracturing responses of layered rough jointed rock-like materials, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2417-2434. https://doi.org/10.1007/s12613-024-2893-9
Cite this article as:
Xinxin Nie, Qian Yin, Manchao He, Qi Wang, Hongwen Jing, Bowen Zheng, Bo Meng, Tianci Deng, Zheng Jiang, and Jiangyu Wu, Shear mechanical properties and fracturing responses of layered rough jointed rock-like materials, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2417-2434. https://doi.org/10.1007/s12613-024-2893-9
Research Article

Shear mechanical properties and fracturing responses of layered rough jointed rock-like materials

+ Author Affiliations
  • Corresponding authors:

    Qian Yin    E-mail: Jeryin@foxmail.com

    Jiangyu Wu    E-mail: wujiangyu@cumt.edu.cn

  • Received: 21 December 2023Revised: 15 February 2024Accepted: 28 March 2024Available online: 29 March 2024
  • This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading. Cubic layered samples with dimensions of 100 mm × 100 mm × 100 mm were casted using rock-like materials, with anisotropic angle (α) and joint roughness coefficient (JRC) ranging from 15° to 75° and 2–20, respectively. The direct shear tests were conducted under the application of initial normal stress (σn) ranging from 1–4 MPa. The test results indicate significant differences in mechanical properties, acoustic emission (AE) responses, maximum principal strain fields, and ultimate failure modes of layered samples under different test conditions. The peak stress increases with the increasing α and achieves a maximum value at α = 60° or 75°. As σn increases, the peak stress shows an increasing trend, with correlation coefficients R² ranging from 0.918 to 0.995 for the linear least squares fitting. As JRC increases from 2–4 to 18–20, the cohesion increases by 86.32% when α = 15°, while the cohesion decreases by 27.93% when α = 75°. The differences in roughness characteristics of shear failure surface induced by α result in anisotropic post-peak AE responses, which is characterized by active AE signals when α is small and quiet AE signals for a large α. For a given JRC = 6–8 and σn = 1 MPa, as α increases, the accumulative AE counts increase by 224.31% (α increased from 15° to 60°), and then decrease by 14.68% (α increased from 60° to 75°). The shear failure surface is formed along the weak interlayer when α = 15° and penetrates the layered matrix when α = 60°. When α = 15°, as σn increases, the adjacent weak interlayer induces a change in the direction of tensile cracks propagation, resulting in a stepped pattern of cracks distribution. The increase in JRC intensifies roughness characteristics of shear failure surface for a small α, however, it is not pronounced for a large α. The findings will contribute to a better understanding of the mechanical responses and failure mechanisms of the layered rocks subjected to shear loads.
  • loading
  • Supplementary Information-s12613-024-2893-9.docx
  • [1]
    H.L. Jia, S. Ding, F. Zi, G.Y. Li, and Y. Yao, Development of anisotropy in sandstone subjected to repeated frost action, Rock Mech. Rock Eng., 54(2021), No. 4, p. 1863. doi: 10.1007/s00603-020-02343-5
    [2]
    X.L. Wang, Y.X. Zhao, X.L. Zhang, Z. Sun, Y.R. Gao, and Y.D. Jiang, Effects of anisotropy on strength and deformability of anthracite under high confinement, Rock Mech. Rock Eng., 56(2023), No. 3, p. 2157. doi: 10.1007/s00603-022-03140-y
    [3]
    D.C. Zhao, Y.J. Xia, C.Q. Zhang, et al., A new method to investigate the size effect and anisotropy of mechanical properties of columnar jointed rock mass, Rock Mech. Rock Eng., 56(2023), No. 4, p. 2829. doi: 10.1007/s00603-022-03200-3
    [4]
    L.R. Ban, W.S. Du, C.Z. Qi, and C. Zhu, Modified 2D roughness parameters for rock joints at two different scales and their correlation with JRC, Int. J. Rock Mech. Min. Sci., 137(2021), art. No. 104549. doi: 10.1016/j.ijrmms.2020.104549
    [5]
    N.N. Li, Y.Q. Zhou, and H.B. Li, Experimental study for the effect of joint surface characteristics on stress wave propagation, Geomech. Geophys. Geo Energy Geo Resour., 7(2021), No. 3, art. No. 50. doi: 10.1007/s40948-021-00235-8
    [6]
    H.J. Su, Y. Jiang, L.Y. Yu, W.B. Wang, and Q.Z. Guo, Dynamic fracture and deformation responses of rock mass specimens containing 3D printing rough joint subjected to impact loading, Geomech. Geophys. Geo Energy Geo Resour., 8(2022), No. 6, art. No. 186. doi: 10.1007/s40948-022-00501-3
    [7]
    X.Z. Wu, H.F. Zheng, and Y.J. Jiang, Influence of joint roughness on the shear properties of energy-absorbing bolt, Int. J. Rock Mech. Min. Sci., 163(2023), art. No. 105322. doi: 10.1016/j.ijrmms.2022.105322
    [8]
    M.Y. Zhai, L. Xue, H.R. Chen, C. Xu, and Y. Cui, Effects of shear rates on the damaging behaviors of layered rocks subjected to direct shear: Insights from acoustic emission characteristics, Eng. Fract. Mech., 258(2021), art. No. 108046. doi: 10.1016/j.engfracmech.2021.108046
    [9]
    F. Jiang, G. Wang, P. He, et al., Mechanical failure analysis during direct shear of double-joint rock mass, Bull. Eng. Geol. Environ., 81(2022), No. 10, art. No. 410. doi: 10.1007/s10064-022-02930-6
    [10]
    Z.B. Zhong, R.G. Deng, J. Zhang, and X.Z. Hu, Fracture properties of jointed rock infilled with mortar under uniaxial compression, Eng. Fract. Mech., 228(2020), art. No. 106822. doi: 10.1016/j.engfracmech.2019.106822
    [11]
    J.T. Zhang, M. Kikumoto, H. Yasuhara, S. Ogata, and K. Kishida, Modeling the shearing behavior of discontinuous rock mass incorporating dilation of joint aperture, Int. J. Rock Mech. Min. Sci., 153(2022), art. No. 105101. doi: 10.1016/j.ijrmms.2022.105101
    [12]
    J.Y. Wu, H.W. Jing, Y. Gao, Q.B. Meng, Q. Yin, and Y. Du, Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill, Cem. Concr. Compos., 127(2022), art. No. 104408. doi: 10.1016/j.cemconcomp.2022.104408
    [13]
    J.Y. Wu, H.S. Wong, H. Zhang, Q. Yin, H.W. Jing, and D. Ma, Improvement of cemented rockfill by premixing low-alkalinity activator and fly ash for recycling gangue and partially replacing cement, Cem. Concr. Compos., 145(2024), art. No. 105345. doi: 10.1016/j.cemconcomp.2023.105345
    [14]
    Y. Tian, W.Z. Chen, H.M. Tian, J.P. Yang, Z.Y. Zhang, and X.Y. Shu, Analytical model of layered rock considering its time-dependent behaviour, Rock Mech. Rock Eng., 54(2021), No. 11, p. 5937. doi: 10.1007/s00603-021-02421-2
    [15]
    J.H. Man, M.L. Zhou, D.M. Zhang, H.W. Huang, and J.Y. Chen, Face stability analysis of circular tunnels in layered rock masses using the upper bound theorem, J. Rock Mech. Geotech. Eng., 14(2022), No. 6, p. 1836. doi: 10.1016/j.jrmge.2021.12.023
    [16]
    Y. Tian, X.Y. Shu, H.M. Tian, L.K. He, Y. Jin, and M. Huang, Effect of horizontal stress on the mesoscopic deformation and failure mechanism of layered surrounding rock masses in tunnels, Eng. Fail. Anal., 148(2023), art. No. 107226. doi: 10.1016/j.engfailanal.2023.107226
    [17]
    Y.J. Bai, Z.X. Wang, B. Jiang, et al., Anisotropy of mechanical properties of 2297-T87 Al–Li alloy thick plates, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2212. doi: 10.1007/s12613-023-2652-3
    [18]
    S.M. Faregh, G. Faraji, M.M. Mashhadi, and M. Eftekhari, Texture evolution and mechanical anisotropy of an ultrafine/nano-grained pure copper tube processed via hydrostatic tube cyclic expansion extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2241. doi: 10.1007/s12613-022-2514-4
    [19]
    X.C. Shi, X. Yang, Y.F. Meng, and G. Li, An anisotropic strength model for layered rocks considering planes of weakness, Rock Mech. Rock Eng., 49(2016), No. 9, p. 3783. doi: 10.1007/s00603-016-0985-1
    [20]
    J.L. Cheng, S.Q. Yang, K. Chen, D. Ma, F.Y. Li, and L.M. Wang, Uniaxial experimental study of the acoustic emission and deformation behavior of composite rock based on 3D digital image correlation (DIC), Acta Mech. Sin., 33(2017), No. 6, p. 999. doi: 10.1007/s10409-017-0706-3
    [21]
    B. Debecker and A. Vervoort, Two-dimensional discrete element simulations of the fracture behaviour of slate, Int. J. Rock Mech. Min. Sci., 61(2013), p. 161. doi: 10.1016/j.ijrmms.2013.02.004
    [22]
    B. Park and K.B. Min, Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock, Int. J. Rock Mech. Min. Sci., 76(2015), p. 243. doi: 10.1016/j.ijrmms.2015.03.014
    [23]
    X. Li, Y.T. Duan, S.D. Li, and R.Q. Zhou, Study on the progressive failure characteristics of longmaxi shale under uniaxial compression conditions by X-ray micro-computed tomography, Energies, 10(2017), No. 3, p. 303. doi: 10.3390/en10030303
    [24]
    K. Du, X.F. Li, M. Tao, and S.F. Wang, Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests, Int. J. Rock Mech. Min. Sci., 133(2020), art. No. 104411. doi: 10.1016/j.ijrmms.2020.104411
    [25]
    K. Du, X.F. Li, S.Y. Wang, M. Tao, G. Li, and S.F. Wang, Compression-shear failure properties and acoustic emission (AE) characteristics of rocks in variable angle shear and direct shear tests, Measurement, 183(2021), art. No. 109814. doi: 10.1016/j.measurement.2021.109814
    [26]
    P.S. Andrade and A. Almeida Saraiva, Estimating the joint roughness coefficient of discontinuities found in metamorphic rocks, Bull. Eng. Geol. Environ., 67(2008), No. 3, p. 425. doi: 10.1007/s10064-008-0151-4
    [27]
    B.W. Zheng and S.W. Qi, A new index to describe joint roughness coefficient (JRC) under cyclic shear, Eng. Geol., 212(2016), p. 72. doi: 10.1016/j.enggeo.2016.07.017
    [28]
    L. He, Z.M. Zhao, J.Y. Chen, and D.Y. Liu, Empirical shear strength criterion for rock joints based on joint surface degradation characteristics during shearing, Rock Mech. Rock Eng., 53(2020), No. 8, p. 3609. doi: 10.1007/s00603-020-02120-4
    [29]
    N.G. Tan, R.S. Yang, and Z.Y. Tan, Influence of complicated faults on the differentiation and accumulation of in situ stress in deep rock mass, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 791. doi: 10.1007/s12613-022-2528-y
    [30]
    X.G. Liu, W.C. Zhu, Y.X. Liu, Q.L. Yu, and K. Guan, Characterization of rock joint roughness from the classified and weighted uphill projection parameters, Int. J. Geomech., 21(2021), No. 5, art. No. 04021052. doi: 10.1061/(ASCE)GM.1943-5622.0001963
    [31]
    X.Z. Wu, H.F. Zheng, and Y.J. Jiang, Study on the evolution law of rock joint shear stiffness during shearing process through loading-unloading tests, Tunn. Undergr. Space Technol., 127(2022), art. No. 104584. doi: 10.1016/j.tust.2022.104584
    [32]
    H.K. Lê, W.C. Huang, M.C. Liao, and M.C. Weng, Spatial characteristics of rock joint profile roughness and mechanical behavior of a randomly generated rock joint, Eng. Geol., 245(2018), p. 97. doi: 10.1016/j.enggeo.2018.06.017
    [33]
    N. Barton and V. Choubey, The shear strength of rock joints in theory and practice, Rock Mech., 10(1977), No. 1, p. 1.
    [34]
    P. Li, M.F. Cai, Y.B. Gao, M. Gorjian, S.J. Miao, and Y. Wang, Macro/mesofracture and instability behaviors of jointed rocks containing a cavity under uniaxial compression using AE and DIC techniques, Theor. Appl. Fract. Mech., 122(2022), art. No. 103620. doi: 10.1016/j.tafmec.2022.103620
    [35]
    Y.C. Li, W. Wu, and B. Li, An analytical model for two-order asperity degradation of rock joints under constant normal stiffness conditions, Rock Mech. Rock Eng., 51(2018), No. 5, p. 1431. doi: 10.1007/s00603-018-1405-5
    [36]
    Q. Yin, J.Y. Wu, C. Zhu, M.C. He, Q.X. Meng, and H.W. Jing, Shear mechanical responses of sandstone exposed to high temperature under constant normal stiffness boundary conditions, Geomech. Geophys. Geo Energy Geo Resour., 7(2021), No. 2, art. No. 35. doi: 10.1007/s40948-021-00234-9
    [37]
    Q. Yin, H.W. Jing, B. Meng, R.C. Liu, and Y.J. Wu, Shear mechanical properties of 3D rough rock fracture surfaces under constant normal stiffness conditions, Chin. J. Rock Mech. Eng., 39(2020), No. 11, p. 2213.
    [38]
    F. Zhang, T.Z. Cheng, Z.Z. Zhu, D.W. Hu, and J.F. Shao, The effect of pre-heating treatment and water–cement ratio on the shearing behavior and permeability of granite–cement interface samples, Rock Mech. Rock Eng., 54(2021), No. 11, p. 5639. doi: 10.1007/s00603-021-02574-0
    [39]
    T.T. Luo, D. Zou, X.D. Zhao, C.Y. Zhang, T. Han, and Y.C. Song, Strength behaviours of methane hydrate-bearing marine sediments in the South China Sea, J. Nat. Gas Sci. Eng., 100(2022), art. No. 104476. doi: 10.1016/j.jngse.2022.104476
    [40]
    Y. Zhang, J.Y. Lu, W. Han, Y.W. Xiong, and J.S. Qian, Effects of moisture and stone content on the shear strength characteristics of soil-rock mixture, Materials, 16(2023), No. 2, art. No. 567. doi: 10.3390/ma16020567
    [41]
    J. Oh, Y. Li, R. Mitra, and I. Canbulat, A numerical study on dilation of a saw-toothed rock joint under direct shear, Rock Mech. Rock Eng., 50(2017), No. 4, p. 913. doi: 10.1007/s00603-016-1142-6
    [42]
    Q. Yin, X.X. Nie, J.Y. Wu, Q. Wang, K.Q. Bian, and H.W. Jing, Experimental study on unloading induced shear performances of 3D saw-tooth rock fractures, Int. J. Min. Sci. Technol., 33(2023), No. 4, p. 463. doi: 10.1016/j.ijmst.2023.02.002
    [43]
    Q.B. Meng, M.W. Zhang, L.J. Han, H. Pu, and Y.L. Chen, Acoustic emission characteristics of red sandstone specimens under uniaxial cyclic loading and unloading compression, Rock Mech. Rock Eng., 51(2018), No. 4, p. 969. doi: 10.1007/s00603-017-1389-6
    [44]
    T.Y. Guo and Q. Zhao, Acoustic emission characteristics during the microcracking processes of granite, marble and sandstone under mode I loading, Rock Mech. Rock Eng., 55(2022), No. 9, p. 5467. doi: 10.1007/s00603-022-02937-1
    [45]
    X. Zhou, X.F. Liu, X.R. Wang, Y.B. Liu, H. Xie, and P.F. Du, Acoustic emission characteristics of coal failure under triaxial loading and unloading disturbance, Rock Mech. Rock Eng., 56(2023), No. 2, p. 1043. doi: 10.1007/s00603-022-03104-2
    [46]
    G.H. Hu, Q. Yang, X. Qiu, et al., Use of DIC and AE for investigating fracture behaviors of cold recycled asphalt emulsion mixtures with 100% RAP, Constr. Build. Mater., 344(2022), art. No. 128278. doi: 10.1016/j.conbuildmat.2022.128278
    [47]
    J.W. Ying, J.Z. Huang, and J.Z. Xiao, Test and theoretical prediction of chloride ion diffusion in recycled fine aggregate mortar under uniaxial compression, Constr. Build. Mater., 321(2022), art. No. 126384. doi: 10.1016/j.conbuildmat.2022.126384
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Share Article

    Article Metrics

    Article Views(432) PDF Downloads(31) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return