Shuaishuai Xiao, Jialong Shen, Jianing Zhao, Jie Fang, Caiyu Liang,  and Lei Zhou, Electromagnetic responses on microstructures of duplex stainless steels based on 3D cellular and electromagnetic sensor finite element models, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2681-2691. https://doi.org/10.1007/s12613-024-2894-8
Cite this article as:
Shuaishuai Xiao, Jialong Shen, Jianing Zhao, Jie Fang, Caiyu Liang,  and Lei Zhou, Electromagnetic responses on microstructures of duplex stainless steels based on 3D cellular and electromagnetic sensor finite element models, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2681-2691. https://doi.org/10.1007/s12613-024-2894-8
Research Article

Electromagnetic responses on microstructures of duplex stainless steels based on 3D cellular and electromagnetic sensor finite element models

+ Author Affiliations
  • Corresponding author:

    Jialong Shen    E-mail: Jialong.Shen@glut.edu.cn

  • Received: 28 November 2023Revised: 26 March 2024Accepted: 28 March 2024Available online: 29 March 2024
  • Microstructures determine mechanical properties of steels, but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements. General microstructure characterization methods are time consuming and results are not representative for overall quality level as only a fraction of steel sample was selected to be examined. In this paper, a macro and micro coupled 3D model was developed for nondestructively characterization of steel microstructures. For electromagnetic signals analysis, the relative permeability value computed by the micro cellular model can be used in the macro electromagnetic sensor model. The effects of different microstructure components on the relative permeability of duplex stainless steel (grain size, phase fraction, and phase distribution) were discussed. The output inductance of an electromagnetic sensor was determined by relative permeability values and can be validated experimentally. The findings indicate that the inductance value of an electromagnetic sensor at low frequency can distinguish different microstructures. This method can be applied to real-time on-line characterize steel microstructures in process of steel rolling.
  • loading
  • [1]
    A. Vinoth Jebaraj, L. Ajaykumar, C.R. Deepak, and K.V.V. Aditya, Weldability, machinability and surfacing of commercial duplex stainless steel AISI2205 for marine applications–A recent review, J. Adv. Res., 8(2017), No. 3, p. 183. doi: 10.1016/j.jare.2017.01.002
    [2]
    M. Rabi, R. Shamass, and K.A. Cashell, Structural performance of stainless steel reinforced concrete members: A review, Constr. Build. Mater., 325(2022), art. No. 126673. doi: 10.1016/j.conbuildmat.2022.126673
    [3]
    K. Yıldızlı, Investigation on the microstructure and toughness properties of austenitic and duplex stainless steels weldments under cryogenic conditions, Mater. Des., 77(2015), p. 83. doi: 10.1016/j.matdes.2015.04.008
    [4]
    S.L. Sheng, Y.X. Qiao, R.Z. Zhai, M.Y. Sun, and B. Xu, Processing map and dynamic recrystallization behaviours of 316LN-Mn austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2386. doi: 10.1007/s12613-023-2714-6
    [5]
    Q.X. Ran, J.Y. Guo, Z.L. Zhao, B.Y. Duan, L.N. Fang, and L. Li, Study on microstructure and corrosion resistance of duplex stainless steel 2205 in real seawater rich containing mold, Int. J. Electrochem. Sci., 17(2022), No. 7, art. No. 220723. doi: 10.20964/2022.07.19
    [6]
    S.Y. Cai, K.K. Lu, X.N. Li, L. Wen, F.F. Huang, and Y. Jin, Quantitative micro-electrochemical study of duplex stainless steel 2205 in 3.5wt% NaCl solution, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 2053. doi: 10.1007/s12613-021-2291-5
    [7]
    M.M. Pan, X.M. Zhang, P. Chen, X.B. Su, and R.D.K. Misra, The effect of chemical composition and annealing condition on the microstructure and tensile properties of a resource-saving duplex stainless steel, Mater. Sci. Eng. A, 788(2020), art. No. 139540. doi: 10.1016/j.msea.2020.139540
    [8]
    L. Zhou, R. Hall, and C.L. Davis, Measured and modelled low field relative permeability for dual phase steels at high temperature, J. Magn. Magn. Mater., 475(2019), p. 38. doi: 10.1016/j.jmmm.2018.11.096
    [9]
    X.J. Hao, W. Yin, M. Strangwood, A.J. Peyton, P.F. Morris, and C.L. Davis, Characterization of decarburization of steels using a multifrequency electromagnetic sensor: Experiment and modeling, Metall. Mater. Trans. A, 40(2009), No. 4, p. 745. doi: 10.1007/s11661-008-9776-y
    [10]
    S.M. Thompson and B.K. Tanner, The magnetic properties of pearlitic steels as a function of carbon content, J. Magn. Magn. Mater., 123(1993), No. 3, p. 283. doi: 10.1016/0304-8853(93)90454-A
    [11]
    P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1112. doi: 10.1007/s12613-021-2308-0
    [12]
    J. Liu, J. Wilson, C.L. Davis, and A. Peyton, Magnetic characterisation of grain size and precipitate distribution by major and minor BH loop measurements, J. Magn. Magn. Mater., 481(2019), p. 55. doi: 10.1016/j.jmmm.2019.02.088
    [13]
    S.Z. Wang, Z.J. Gao, G.L. Wu, and X.P. Mao, Titanium microalloying of steel: A review of its effects on processing, microstructure and mechanical properties, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 645. doi: 10.1007/s12613-021-2399-7
    [14]
    D. Chatterjee, Effect of repeated warm rolling cold rolling and annealing on the microstructure and mechanical properties of AISI 301LN grade austenitic stainless steel, Mater. Today Proc., 46(2021), p. 10604. doi: 10.1016/j.matpr.2021.01.341
    [15]
    Q.Z. Li, Carbon nanotube reinforced porous magnesium composite: 3D nondestructive microstructure characterization using X-ray micro-computed tomography, Mater. Lett., 133(2014), No., p. 83.
    [16]
    X.L. Yan, H.P. Wang, and X.Z. Fan, Research progress in nonlinear ultrasonic testing for early damage in metal materials, Materials, 16(2023), No. 6, art. No. 2161. doi: 10.3390/ma16062161
    [17]
    M.B. Kishore, D.G. Park, C.S. Angani, and D.H. Lee, Characterization of pulsed eddy current signals to discriminate cladding change over wall thinning of ferromagnetic pipes, Mater. Today Proc., 5(2018), No. 12, p. 25843. doi: 10.1016/j.matpr.2018.06.577
    [18]
    L. Li, Y. Yang, X. Cai, and Y.H. Kang, Investigation on the formation mechanism of crack indications and the influences of related parameters in magnetic particle inspection, Appl. Sci., 10(2020), No. 19, art. No. 6805. doi: 10.3390/app10196805
    [19]
    A. Srivastava, A. Awale, M. Vashista, and M.Z. Khan Yusufzai, Characterization of ground steel using nondestructive magnetic Barkhausen noise technique, J. Mater. Eng. Perform., 29(2020), No. 7, p. 4617. doi: 10.1007/s11665-020-04993-6
    [20]
    F. Peng, Z.R. Feng, Y. Zhao, and J.Z. Long, A novel reticular retained austenite on the weld fusion line of low carbon martensitic stainless steel 06Cr13Ni4Mo and the influence on the mechanical properties, Metals, 12(2022), No. 3, art. No. 432. doi: 10.3390/met12030432
    [21]
    J. Xie, C.H. Xu, G.M. Chen, W.P. Huang, and G.B. Song, Automated identification of front/rear surface cracks in ferromagnetic metals based on eddy current pulsed thermography, Infrared Phys. Technol., 126(2022), art. No. 104345. doi: 10.1016/j.infrared.2022.104345
    [22]
    J.W. Wilson, N. Karimian, J. Liu, W. Yin, C.L. Davis, and A.J. Peyton, Measurement of the magnetic properties of P9 and T22 steel taken from service in power station, J. Magn. Magn. Mater., 360(2014), p. 52. doi: 10.1016/j.jmmm.2014.01.057
    [23]
    W. Yin, S.J. Dickinson, and A.J. Peyton, A multi-frequency impedance analysing instrument for eddy current testing, Meas. Sci. Technol., 17(2006), No. 2, p. 393. doi: 10.1088/0957-0233/17/2/022
    [24]
    M. Aghadavoudi Jolfaei, L. Zhou, and C. Davis, Consideration of magnetic measurements for characterisation of ferrite–martensite commercial dual-phase (DP) steel and basis for optimisation of the operating magnetic field for open loop deployable sensors, Metals, 11(2021), No. 3, art. No. 490. doi: 10.3390/met11030490
    [25]
    F.H. Yang, A. Luinenburg, C. Bos, et al., In-line quantitative measurement of transformed phase fraction by EM sensors during controlled cooling on the run-out table of a hot strip mill, [in] The 19th World Conference on Non-Destructive Testing, Munich, 2016, p. 1.
    [26]
    H. Yang, F.D. van den Berg, C. Bos, et al., Em sensor array system and performance evaluation for in-line measurement of phase transformation in steel, Insight, 61(2019), No. 3, p. 153. doi: 10.1784/insi.2019.61.3.153
    [27]
    W. Zhu, H. Yang, A. Luinenburg, et al., Development and deployment of online multifrequency electromagnetic system to monitor steel hot transformation on runout table of hot strip mill, Ironmaking Steelmaking, 41(2014), No. 9, p. 685. doi: 10.1179/1743281214Y.0000000183
    [28]
    L. Zhou, J. Liu, X.J. Hao, M. Strangwood, A.J. Peyton, and C.L. Davis, Quantification of the phase fraction in steel using an electromagnetic sensor, NDT & E Int., 67(2014), p. 31.
    [29]
    L. Zhou, C. Davis, and P. Kok, Steel microstructure–magnetic permeability modelling: The effect of ferrite grain size and phase fraction, J. Magn. Magn. Mater., 519(2021), art. No. 167439. doi: 10.1016/j.jmmm.2020.167439
    [30]
    J. Liu, X.J. Hao, L. Zhou, M. Strangwood, C.L. Davis, and A.J. Peyton, Measurement of microstructure changes in 9Cr–1Mo and 2.25Cr–1Mo steels using an electromagnetic sensor, Scripta Mater., 66(2012), No. 6, p. 367. doi: 10.1016/j.scriptamat.2011.11.032
    [31]
    D.M. Escriba, E. Materna-Morris, R.L. Plaut, and A.F. Padilha, Chi-phase precipitation in a duplex stainless steel, Mater. Charact., 60(2009), No. 11, p. 1214. doi: 10.1016/j.matchar.2009.04.013
    [32]
    S.S. Xiao, J.L. Shen, J.N. Zhao, et al., Non-destructive characterization on multiphase structures of duplex stainless steel using multi-frequency electromagnetic sensor, NDT & E Int., 138(2023), art. No. 102892.
    [33]
    Z. Guo, J.X. Zhou, Y.J. Yin, X. Shen, and X.Y. Ji, Numerical simulation of three-dimensional mesoscopic grain evolution: Model development, validation, and application to nickel-based superalloys, Metals, 9(2019), No. 1, art. No. 57. doi: 10.3390/met9010057
    [34]
    J.L. Shen, L. Zhou, W. Jacobs, P. Hunt, and C. Davis, Real-time in-line steel microstructure control through magnetic properties using an EM sensor, J. Magn. Magn. Mater., 490(2019), art. No. 165504. doi: 10.1016/j.jmmm.2019.165504
    [35]
    J.W. Wilson, L. Zhou, C.L. Davis, and A.J. Peyton, High temperature magnetic characterisation of structural steels using Epstein frame, Meas. Sci. Technol., 32(2021), No. 12, art. No. 125601. doi: 10.1088/1361-6501/ac17fa
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(318) PDF Downloads(28) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return