Qiang Liu, Xiang Li, Shen Du, Ming Gao, Yanbin Yin, and Jiongming Zhang, Investigation of bubbles escape behavior from low basicity mold flux for high-Mn high-Al steels using 3D X-ray microscope, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 102-110. https://doi.org/10.1007/s12613-024-2896-6
Cite this article as:
Qiang Liu, Xiang Li, Shen Du, Ming Gao, Yanbin Yin, and Jiongming Zhang, Investigation of bubbles escape behavior from low basicity mold flux for high-Mn high-Al steels using 3D X-ray microscope, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 102-110. https://doi.org/10.1007/s12613-024-2896-6
Research Article

Investigation of bubbles escape behavior from low basicity mold flux for high-Mn high-Al steels using 3D X-ray microscope

+ Author Affiliations
  • Corresponding author:

    Jiongming Zhang    E-mail: jmz2203@sina.com

  • Received: 7 December 2023Revised: 4 March 2024Accepted: 1 April 2024Available online: 2 April 2024
  • During the continuous casting process of high-Mn high-Al steels, various types of gases such as Ar need to escape through the top of the mold. In which, the behavior of bubbles traversing the liquid slag serves as a restrictive link, closely associated with viscosity and the thickness of liquid slag. In contrast to two-dimensional surface observation, three-dimensional (3D) analysis method can offer a more intuitive, accurate, and comprehensive information. Therefore, this study employs a 3D X-ray microscope (3D-XRM) to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag, different temperatures, and different holding times. The results indicate that as basicity of slag increases from 0.52 to 1.03, temperature increases from 1423 to 1573 K, the viscosity of slag decreases, the floating rate of bubbles increases. In addition, when holding time increases from 10 to 30 s, the bubbles floating distance increases, and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases. In one word, increasing the basicity, temperature, and holding time leading to an increase in the removal rate of bubbles especially for the large. These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.
  • loading
  • [1]
    L.Z. Kong, F. Xing, T.J. Wang, et al., Interfacial reaction model of high-Al steel in continuous casting mold, Metall. Mater. Trans. B, 54(2023), No. 3, p. 1546. doi: 10.1007/s11663-023-02780-x
    [2]
    J. Yang, L.J. Wang, Y. Li, T.J. Wang, L.Z. Kong, and X.M. Zang, Modeling of flux reaction and mixing in continuous casting mold of medium Mn steel, Metall. Mater. Trans. B, 53(2022), No. 3, p. 1516. doi: 10.1007/s11663-022-02461-1
    [3]
    W.L. Wang, B.X. Lu, and D. Xiao, A review of mold flux development for the casting of high-Al steels, Metall. Mater. Trans. B, 47(2016), No. 1, p. 384. doi: 10.1007/s11663-015-0474-z
    [4]
    J.X. Gao, G.H. Wen, T. Huang, B.W. Bai, P. Tang, and Q. Liu, Effect of slag–steel reaction on the structure and viscosity of CaO–SiO2-based mold flux during high-Al steel casting, J. Non Cryst. Solids, 452(2016), p. 119. doi: 10.1016/j.jnoncrysol.2016.08.036
    [5]
    H. Zhao, W.L. Wang, L.J. Zhou, B.X. Lu, and Y.B. Kang, Effects of MnO on crystallization, melting, and heat transfer of CaO–Al2O3-based mold flux used for high Al-TRIP steel casting, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1510. doi: 10.1007/s11663-014-0043-x
    [6]
    L. Wang, J. Yang, and Y.B. Liu, Numerical investigation for effects of polydisperse argon bubbles on molten steel flow and liquid slag entrapment in a slab continuous casting mold, Metall. Mater. Trans. B, 53(2022), No. 6, p. 3707. doi: 10.1007/s11663-022-02634-y
    [7]
    D. Bao, X. Zhang, H.F. Dong, Z.L. Ouyang, X.P. Zhang, and S.J. Zhang, Numerical simulations of bubble behavior and mass transfer in CO2 capture system with ionic liquids, Chem. Eng. Sci., 135(2015), p. 76. doi: 10.1016/j.ces.2015.06.035
    [8]
    C.L. Yang, G.H. Wen, X.F. Zhu, and P. Tang, In situ observation and numerical simulation of bubble behavior in CaO–SiO2 based slag during isothermal and nonisothermal processes, J. Non Cryst. Solids, 464(2017), p. 56. doi: 10.1016/j.jnoncrysol.2017.03.028
    [9]
    L.J. Zhou and W.L. Wang, Application of non-Arrhenius models to the viscosity of mold flux, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1548. doi: 10.1007/s11663-016-0651-8
    [10]
    J.W. Cho, K. Blazek, M. Frazee, H.B. Yin, J.H. Park, and S.W. Moon, Assessment of CaO–Al2O3 based mold flux system for high aluminum TRIP casting, ISIJ Int., 53(2013), No. 1, p. 62. doi: 10.2355/isijinternational.53.62
    [11]
    J.W. Cho and H.T. Jeong, Infiltration of slag film into the grooves on a continuous casting mold, Metall. Mater. Trans. B, 44(2013), No. 1, p. 146. doi: 10.1007/s11663-012-9748-x
    [12]
    X. Li, Y.P. Bao, M. Wang, and L. Lin, Simulation study on factors influencing the entrainment behavior of liquid steel as bubbles pass through the steel/slag interface, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p. 511. doi: 10.1007/s12613-016-1262-8
    [13]
    S.G. Zheng and M.Y. Zhu, Physical modeling of gas–liquid interfacial fluctuation in a thick slab continuous casting mold with argon blowing, Int. J. Miner. Metall. Mater., 17(2010), No. 6, p. 704. doi: 10.1007/s12613-010-0377-6
    [14]
    K. Wu, W. Qian, S.J. Chu, Q. Niu, and H.W. Luo, Behavior of slag foaming caused by blowing gas in molten slags, ISIJ Int., 40(2000), No. 10, p. 954. doi: 10.2355/isijinternational.40.954
    [15]
    Y. Cao, Z. Kawara, T. Yokomine, and T. Kunugi, Experimental and numerical study on nucleate bubble deformation in subcooled flow boiling, Int. J. Multiphase Flow, 82(2016), p. 93. doi: 10.1016/j.ijmultiphaseflow.2016.02.008
    [16]
    Z.J. Shen, Q.F. Liang, J.L. Xu, and H.F. Liu, In situ study on the formation mechanism of bubbles during the reaction of captured chars on molten slag surface, Int. J. Heat Mass Transfer, 95(2016), p. 517. doi: 10.1016/j.ijheatmasstransfer.2015.12.040
    [17]
    Z.K. Wu, S.C. Wu, J.G. Bao, et al., The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion, Int. J. Fatigue, 151(2021), art. No. 106317. doi: 10.1016/j.ijfatigue.2021.106317
    [18]
    L.X. Cui, X.H. Lei, L.F. Zhang, et al., Three-dimensional characterization of defects in continuous casting blooms of heavy rail steel using X-ray computed tomography, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2327. doi: 10.1007/s11663-021-02172-z
    [19]
    Q. Liu, Z.H. Zhan, M. Gao, L.D. Xing, Y.B. Yin, and J.M. Zhang, Investigation of evolution of inclusions in 15-5PH stainless steel during hot compression using 3D X-ray microscopy, Metall. Mater. Trans. B, 54(2023), No. 5, p. 2852. doi: 10.1007/s11663-023-02882-6
    [20]
    H. Singh, A.M. Gokhale, Y. Mao, A. Tewari, and A.K. Sachdev, Reconstruction and quantitative characterization of multiphase, multiscale three-dimensional microstructure of a cast Al–Si base alloy, Metall. Mater. Trans. B, 40(2009), No. 6, p. 859. doi: 10.1007/s11663-009-9291-6
    [21]
    L.J. Zhou, H.F. Wu, W.L. Wang, H. Luo, X. Yan, and Y. Yang, Electrical conductivity and melt structure of the CaO–SiO2-based mold fluxes with different basicity, Metall. Mater. Trans. B, 53(2022), No. 1, p. 466. doi: 10.1007/s11663-021-02383-4
    [22]
    L.J. Zhou, W.L. Wang, F.J. Ma, et al., A kinetic study of the effect of basicity on the mold fluxes crystallization, Metall. Mater. Trans. B, 43(2012), No. 2, p. 354. doi: 10.1007/s11663-011-9591-5
    [23]
    K.Z. Gu, W.L. Wang, L.J. Zhou, F.J. Ma, and D.Y. Huang, The effect of basicity on the radiative heat transfer and interfacial thermal resistance in continuous casting, Metall. Mater. Trans. B, 43(2012), No. 4, p. 937. doi: 10.1007/s11663-012-9644-4
    [24]
    X.X. Wan, C.B. Shi, Y. Huang, Q.F. Shu, and Y. Zhao, Effect of SiO2 and BaO/CaO mass ratio on structure and viscosity of B2O3-containing CaF2–CaO–Al2O3-based slag for electroslag remelting of rotor steel, Metall. Mater. Trans. B, 54(2023), No. 1, p. 465. doi: 10.1007/s11663-022-02706-z
    [25]
    X.X. Wan, C.B. Shi, Y. Zhao, and J. Li, Effect of CaF2 and Li2O on structure and viscosity of low-fluoride slag for electroslag remelting of rotor steel, J. Non Cryst. Solids, 597(2022), art. No. 121914. doi: 10.1016/j.jnoncrysol.2022.121914
    [26]
    D.W. Cai, L. Zhang, W.L. Wang, L. Zhang, and I. Sohn, Dissolution of TiO2 and TiN inclusions in CaO–SiO2–B2O3-based fluorine-free mold flux, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1740. doi: 10.1007/s12613-023-2622-9
    [27]
    S.P. He, Q. Wang, D. Xie, C.S. Xu, Z.S. Li, and K.C. Mills, Solidification and crystallization properties of CaO–SiO2–Na2O based mold fluxes, Int. J. Miner. Metall. Mater., 16(2009), No. 3, p. 261. doi: 10.1016/S1674-4799(09)60047-9
    [28]
    G.Q. Yang, B. Du, and L.S. Fan, Bubble Formation and dynamics in gas–liquid–solid fluidization—A review, Chem. Eng. Sci., 62(2007), No. 1-2, p. 2. doi: 10.1016/j.ces.2006.08.021
    [29]
    S. Schwarz and J. Fröhlich, Numerical study of single bubble motion in liquid metal exposed to a longitudinal magnetic field, Int. J. Multiphase Flow, 62(2014), p. 134. doi: 10.1016/j.ijmultiphaseflow.2014.02.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(247) PDF Downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return