Ayahisa Okawa, Son Thanh Nguyen, Tadachika Nakayama, Thi-Mai-Dung Do, Hisayuki Suematsu, Shu Yin, Takuya Hasegawa, Tsuneo Suzuki, Takashi Goto, and Koichi Niihara, High-temperature corrosion of sintered RE2Si2O7 (RE = Yb and Ho) environmental barrier coating materials by volcanic ash, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1628-1638. https://doi.org/10.1007/s12613-024-2899-3
Cite this article as:
Ayahisa Okawa, Son Thanh Nguyen, Tadachika Nakayama, Thi-Mai-Dung Do, Hisayuki Suematsu, Shu Yin, Takuya Hasegawa, Tsuneo Suzuki, Takashi Goto, and Koichi Niihara, High-temperature corrosion of sintered RE2Si2O7 (RE = Yb and Ho) environmental barrier coating materials by volcanic ash, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1628-1638. https://doi.org/10.1007/s12613-024-2899-3
Research Article

High-temperature corrosion of sintered RE2Si2O7 (RE = Yb and Ho) environmental barrier coating materials by volcanic ash

+ Author Affiliations
  • Corresponding authors:

    Ayahisa Okawa    E-mail: ayahisa.okawa@tohoku.ac.jp

    Tadachika Nakayama    E-mail: nky15@vos.nagaokaut.ac.jp

  • Received: 31 October 2023Revised: 27 March 2024Accepted: 2 April 2024Available online: 3 April 2024
  • Rare-earth silicates are promising environmental barrier coatings (EBCs) that can protect SiCf/SiCm substrates in next-generation gas turbine blades. Notably, RE2Si2O7 (RE = Yb and Ho) shows potential as an EBC due to its coefficient of thermal expansion (CTE) compatible with substrates and high resistance to water vapor corrosion. The target operating temperature for next-generation turbine blades is 1400°C. Corrosion is inevitable during adhesion to molten volcanic ash, and thus, understanding the corrosion behavior of the material is crucial to its reliability. This study investigates the high-temperature corrosion behavior of sintered RE2Si2O7 (RE = Yb and Ho). Samples were prepared using a solid-state reaction and hot-press method. They were then exposed to volcanic ash at 1400°C for 2, 24, and 48 h. After 48 h of exposure, volcanic ash did not react with Yb2Si2O7 but penetrated its interior, causing damage. Meanwhile, Ho2Si2O7 was partially dissolved in the molten volcanic ash, forming a reaction zone that prevented volcanic ash melts from penetrating the interior. With increasing heat treatment time, the reaction zone expanded, and the thickness of the acicular apatite grains increased. The Ca:Si ratios in the residual volcanic ash were mostly unchanged for Yb2Si2O7 but decreased considerably over time for Ho2Si2O7. The Ca in volcanic ash was consumed and formed apatite, indicating that RE3+ ions with large ionic radii (Ho > Yb) easily precipitated apatite from the volcanic ash.
  • loading
  • Supplementary Information-s12613-024-2899-3.docx
  • [1]
    H. Xu, S.F. Yang, E.H. Wang, et al., Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 138. doi: 10.1007/s12613-023-2687-5
    [2]
    Y. Yao, D. Wu, X.F. Zhao, and F. Yang, Premature failure induced by non-equilibrium grain-boundary tantalum segregation in air-plasma sprayed ZrO2−YO1.5−TaO2.5 thermal barrier coatings, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2189. doi: 10.1007/s12613-021-2394-z
    [3]
    P. Zamani and Z. Valefi, Comparative investigation of microstructure and high-temperature oxidation resistance of high-velocity oxy-fuel sprayed CoNiCrAlY/nano-Al2O3 composite coatings using satellited powders, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1779. doi: 10.1007/s12613-023-2630-9
    [4]
    S.T. Nguyen, A. Okawa, H. Iwasawa, et al., Titanium nitride and yttrium titanate nanocomposites, endowed with renewable self-healing ability, Adv. Mater. Interfaces, 8(2021), No. 22, art. No. 2100979. doi: 10.1002/admi.202100979
    [5]
    S. Yin and T. Hasegawa, Morphology control of transition metal oxides by liquid-phase process and their material development, KONA Powder Part. J., 40(2023), p. 94. doi: 10.14356/kona.2023015
    [6]
    P. Sun, S.M. Han, J.H. Liu, et al., Introducing oxygen vacancies in TiO2 lattice through trivalent iron to enhance the photocatalytic removal of indoor NO, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 2025. doi: 10.1007/s12613-023-2611-z
    [7]
    J.D. Cao, T. Hhasegawa, Y. Asakura, et al., Synthesis of crystal-phase and color tunable mixed anion Co-doped titanium oxides and their controllable photocatalytic activity, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 2036. doi: 10.1007/s12613-022-2573-6
    [8]
    N.P. Padture, Advanced structural ceramics in aerospace propulsion, Nat. Mater., 15(2016), No. 8, p. 804. doi: 10.1038/nmat4687
    [9]
    E.J. Opila, Oxidation and volatilization of silica formers in water vapor, J. Am. Ceram. Soc., 86(2003), No. 8, p. 1238. doi: 10.1111/j.1151-2916.2003.tb03459.x
    [10]
    E.J. Opila and R.E. Hann Jr, Paralinear oxidation of CVD SiC in water vapor, J. Am. Ceram. Soc., 80(1997), No. 1, p. 197. doi: 10.1111/j.1151-2916.1997.tb02810.x
    [11]
    D. Tejero-Martin, C. Bennett, and T. Hussain, A review on environmental barrier coatings: History, current state of the art and future developments, J. Eur. Ceram. Soc., 41(2021), No. 3, p. 1747. doi: 10.1016/j.jeurceramsoc.2020.10.057
    [12]
    R. Vaßen, E. Bakan, C. Gatzen, S. Kim, D.E. Mack, and O. Guillon, Environmental barrier coatings made by different thermal spray technologies, Coatings, 9(2019), No. 12, art. No. 784. doi: 10.3390/coatings9120784
    [13]
    H. Klemm, Silicon nitride for high-temperature applications, J. Am. Ceram. Soc., 93(2010), No. 6, p. 1501. doi: 10.1111/j.1551-2916.2010.03839.x
    [14]
    Z.Y. Chen, C.C. Lin, W. Zheng, C.F. Jiang, Y. Zeng, and X.M. Song, Water vapor corrosion behaviors of high-entropy pyrosilicates, J. Materiomics, 8(2022), No. 5, p. 992. doi: 10.1016/j.jmat.2022.03.002
    [15]
    X.T. Guo, Y.L. Zhang, T. Li, et al., High-entropy rare-earth disilicate (Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7: A potential environmental barrier coating material, J. Eur. Ceram. Soc., 42(2022), No. 8, p. 3570. doi: 10.1016/j.jeurceramsoc.2022.03.006
    [16]
    Y. Dong, K. Ren, Y.H. Lu, Q.K. Wang, J. Liu, and Y.G. Wang, High-entropy environmental barrier coating for the ceramic matrix composites, J. Eur. Ceram. Soc., 39(2019), No. 7, p. 2574. doi: 10.1016/j.jeurceramsoc.2019.02.022
    [17]
    A. Okawa, S.T. Nguyen, T. Nakayama, H. Suematsu, T. Goto, and K. Niihara, Development of Silicates and Spraying Techniques for Environmental Barrier Coatings, [in] A. Pakseresht and K.K. Amirtharaj Mosas, eds., Ceramic Coatings for High-Temperature Environments : From Thermal Barrier to Environmental Barrier Applications, Springer International Publishing, Cham, 2023, p. 283.
    [18]
    W. Song, Y. Lavallée, K.U. Hess, U. Kueppers, C. Cimarelli, and D.B. Dingwell, Volcanic ash melting under conditions relevant to ash turbine interactions, Nat. Commun., 7(2016), art. No. 10795. doi: 10.1038/ncomms10795
    [19]
    A. Nieto, R. Agrawal, L. Bravo, C. Hofmeister-Mock, M. Pepi, and A. Ghoshal, Calcia–magnesia–alumina–silicate (CMAS) attack mechanisms and roadmap towards Sandphobic thermal and environmental barrier coatings, Int. Mater. Rev., 66(2021), No. 7, p. 451. doi: 10.1080/09506608.2020.1824414
    [20]
    S.H. Kim, T. Osada, Y. Matsushita, T. Hiroto, C.A.J. Fisher, and B.K. Jang, CMAS corrosion behavior of dual-phase composite Gd2Si2O7/Sc2Si2O7 as a promising EBC material, J. Eur. Ceram. Soc., 43(2023), No. 14, p. 6440. doi: 10.1016/j.jeurceramsoc.2023.06.026
    [21]
    M.P. Borom, C.A. Johnson, and L.A. Peluso, Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings, Surf. Coat. Technol., 86(1996), p. 116.
    [22]
    L.C. Sun, Y.X. Luo, Z.L. Tian, et al., High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium–magnesium–aluminosilicate (CMAS), Corros. Sci., 175(2020), art. No. 108881. doi: 10.1016/j.corsci.2020.108881
    [23]
    X. Wang, M.H. Cheng, G.Z. Xiao, et al., Preparation and corrosion resistance of high-entropy disilicate (Y0.25Yb0.25Er0.25Sc0.25)2Si2O7 ceramics, Corros. Sci., 192(2021), art. No. 109786. doi: 10.1016/j.corsci.2021.109786
    [24]
    L.R. Turcer, A.R. Krause, H.F. Garces, L. Zhang, and N.P. Padture, Environmental-barrier coating ceramics for resistance against attack by molten calcia–magnesia–aluminosilicate (CMAS) glass: Part I, YAlO3 and γ-Y2Si2O7, J. Eur. Ceram. Soc., 38(2018), No. 11, p. 3905. doi: 10.1016/j.jeurceramsoc.2018.03.021
    [25]
    S.H. Kim, C.A.J. Fisher, N. Nagashima, Y. Matsushita, and B.K. Jang, Reaction between environmental barrier coatings material Er2Si2O7 and a calcia–magnesia–alumina–silica melt, Ceram. Int., 48(2022), No. 12, p. 17369. doi: 10.1016/j.ceramint.2022.03.001
    [26]
    L.R. Turcer, A.R. Krause, H.F. Garces, L. Zhang, N.P. Padture, Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part II, β-Yb2Si2O7 and β-Sc2Si2O7, J. Eur. Ceram. Soc., 38(2018), No. 11, p. 3914. doi: 10.1016/j.jeurceramsoc.2018.03.010
    [27]
    L.C. Sun, X.M. Ren, Y.X. Luo, et al., Exploration of the mechanism of enhanced CMAS corrosion resistance at 1500°C for multicomponent (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 disilicate, Corros. Sci., 203(2022), art. No. 110343. doi: 10.1016/j.corsci.2022.110343
    [28]
    Z.Y. Chen, C.C. Lin, W. Zheng, Y. Zeng, and Y.R. Niu, Investigation on improving corrosion resistance of rare earth pyrosilicates by high-entropy design with RE-doping, Corros. Sci., 199(2022), art. No. 110217. doi: 10.1016/j.corsci.2022.110217
    [29]
    B.K. Jang, F.J. Feng, K. Suzuta, et al., Corrosion behavior of volcanic ash on sintered mullite for environmental barrier coatings, Ceram. Int., 43(2017), No. 2, p. 1880. doi: 10.1016/j.ceramint.2016.10.147
    [30]
    X. Chen, Y. Li, W. Zhou, et al., Interaction of Yb2Si2O7 environmental barrier coating material with calcium–ferrum–alumina–silicate (CFAS) at high temperature, Ceram. Int., 47(2021), No. 22, p. 31625. doi: 10.1016/j.ceramint.2021.08.043
    [31]
    J. Dean, C. Taltavull, and T.W. Clyne, Influence of the composition and viscosity of volcanic ashes on their adhesion within gas turbine aeroengines, Acta Mater., 109(2016), p. 8. doi: 10.1016/j.actamat.2016.02.011
    [32]
    R.I. Webster and E.J. Opila, Viscosity of CaO–MgO–Al2O3–SiO2 (CMAS) melts: Experimental measurements and comparison to model calculations, J. Non-Cryst. Solids, 584(2022), art. No. 121508. doi: 10.1016/j.jnoncrysol.2022.121508
    [33]
    B.K. Jang, F.J. Feng, K. Suzuta, et al., Corrosion behavior of volcanic ash and calcium magnesium aluminosilicate on Yb2SiO5 environmental barrier coatings, J. Ceram. Soc. Jpn, 125(2017), No. 4, p. 326. doi: 10.2109/jcersj2.16211
    [34]
    S.H. Kim, B.N. Kim, N. Nagashima, Y. Matsushita, and B.K. Jang, High-temperature corrosion of spark plasma sintered Gd2SiO5 with volcanic ash for environmental barrier coatings, J. Eur. Ceram. Soc., 41(2021), No. 5, p. 3161. doi: 10.1016/j.jeurceramsoc.2020.09.001
    [35]
    L.R. Turcer and N.P. Padture, Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid–solution ceramics, Scripta Mater., 154(2018), p. 111. doi: 10.1016/j.scriptamat.2018.05.032
    [36]
    A. Okawa, S.T. Nguyen, J.P. Wiff, et al., Self-healing ability, strength enhancement, and high-temperature oxidation behavior of silicon carbide-dispersed ytterbium disilicate composite for environmental barrier coatings under isothermal heat treatment, J. Eur. Ceram. Soc., 42(2022), No. 13, p. 6170. doi: 10.1016/j.jeurceramsoc.2022.05.057
    [37]
    A.J. Fernández-Carrión, M. Allix, and A.I. Becerro, Thermal expansion of rare-earth pyrosilicates, J. Am. Ceram. Soc., 96(2013), No. 7, p. 2298. doi: 10.1111/jace.12388
    [38]
    A. Okawa, S.T. Nguyen, J.P. Wiff, et al., Autonomous crack healing ability of SiC dispersed Yb2Si2O7 by oxidations in air and water vapor, Ceram. Int., 47(2021), No. 24, p. 34802. doi: 10.1016/j.ceramint.2021.09.020
    [39]
    H.Y. Wang, Z.X. Luo, L.C. Sun, J. Zhang, and J.Y. Wang, Comprehensive microstructural characterization and CMAS infiltration resistance of ytterbium disilicate coatings with lamellar and quasi-columnar structures, Corros. Sci., 221(2023), art. No. 111316. doi: 10.1016/j.corsci.2023.111316
    [40]
    W.D. Summers, D.L. Poerschke, D. Park, J.H. Shaw, F.W. Zok, and C.G. Levi, Roles of composition and temperature in silicate deposit-induced recession of yttrium disilicate, Acta Mater., 160(2018), p. 34. doi: 10.1016/j.actamat.2018.08.043
    [41]
    L.R. Turcer and N.P. Padture, Rare-earth pyrosilicate solid-solution environmental-barrier coating ceramics for resistance against attack by molten calcia–magnesia–aluminosilicate (CMAS) glass, J. Mater. Res., 35(2020), No. 17, p. 2373. doi: 10.1557/jmr.2020.132
    [42]
    Z.L. Tian, X.M. Ren, Y.M. Lei, et al., Corrosion of RE2Si2O7 (RE=Y, Yb, and Lu) environmental barrier coating materials by molten calcium–magnesium–alumino–silicate glass at high temperatures, J. Eur. Ceram. Soc., 39(2019), No. 14, p. 4245. doi: 10.1016/j.jeurceramsoc.2019.05.036
    [43]
    M. Kahlweit, Ostwald ripening of precipitates, Adv. Colloid Interface Sci., 5(1975), No. 1, p. 1. doi: 10.1016/0001-8686(75)85001-9
    [44]
    W. Zhou, Z.B. Niu, X. Chen, P. Xiao, and Y. Li, Synergistic effect of water vapour on the thermal corrosion of CFAS melt to Yb2Si2O7 environmental barrier coating material, Corros. Sci., 225(2023), art. No. 111625. doi: 10.1016/j.corsci.2023.111625
    [45]
    Z.Y. Zhang, Z.L. Xue, H.H. Wang, et al., Corrosion behavior of Y xYb(2− x)Si2O7 environmental barrier coating materials against molten calcium–magnesium–aluminosilicate (CMAS) at 1475°C, Corros. Sci., 227(2024), art. No. 111770. doi: 10.1016/j.corsci.2023.111770
    [46]
    J.L. Stokes, B.J. Harder, V.L. Wiesner, and D.E. Wolfe, High-Temperature thermochemical interactions of molten silicates with Yb2Si2O7 and Y2Si2O7 environmental barrier coating materials, J. Eur. Ceram. Soc., 39(2019), No. 15, p. 5059. doi: 10.1016/j.jeurceramsoc.2019.06.051
    [47]
    V.L. Wiesner, D. Scales, N.S. Johnson, B.J. Harder, A. Garg, and N.P. Bansal, Calcium–magnesium aluminosilicate (CMAS) interactions with ytterbium silicate environmental barrier coating material at elevated temperatures, Ceram. Int., 46(2020), No. 10, p. 16733. doi: 10.1016/j.ceramint.2020.03.249
    [48]
    N.P. Bansal and S.R. Choi, Properties of CMAS glass from desert sand, Ceram. Int., 41(2015), No. 3, p. 3901. doi: 10.1016/j.ceramint.2014.11.072
    [49]
    J. Sleeper, A. Garg, V.L. Wiesner, and N.P. Bansal, Thermochemical interactions between CMAS and Ca2Y8(SiO4)6O2 apatite environmental barrier coating material, J. Eur. Ceram. Soc., 39(2019), No. 16, p. 5380. doi: 10.1016/j.jeurceramsoc.2019.08.040
    [50]
    S.T. Nguyen, A. Okawa, T. Nakayama, and H. Suematsu, Self-healing Ceramic Coatings, [in] R.K. Gupta, A. Motallebzadeh, S. Kakooei, T.A. Nguyen, and A. Behera, eds., Advanced Ceramic Coatings for Emerging Applications, Elsevier, Amsterdam, 2023, p. 107.
    [51]
    X.R. Lv, Y.X. Luo, J.P. Cui, J. Zhang, L. Zhang, and J.Y. Wang, Atomic structural visualization on γ-Ho2Si2O7 using iDPC-STEM technique and its correlation with thermal expansion as advanced environmental barrier coating, Mater. Today Phys., 30(2023), art. No. 100961. doi: 10.1016/j.mtphys.2022.100961
    [52]
    Z.L. Tian, J. Zhang, L.Y. Zheng, et al., General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300oC, Corros. Sci., 148(2019), p. 281. doi: 10.1016/j.corsci.2018.12.032
    [53]
    U. Schulz and W. Braue, Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO–MgO–Al2O3–SiO2) and volcanic ash deposits, Surf. Coat. Technol., 235(2013), p. 165. doi: 10.1016/j.surfcoat.2013.07.029
    [54]
    Q. Arnaud, D. Caurant, O. Majérus, J.L. Dussossoy, and T. Charpentier, Effect of changing the rare earth cation type on the structure and crystallization behavior of an aluminoborosilicate glass, Phys. Chem. Glasses, 49(2008), No. 4, p. 192.
    [55]
    G. Costa, B.J. Harder, N.P. Bansal, B.A. Kowalski, and J.L. Stokes, Thermochemistry of calcium rare-earth silicate oxyapatites, J. Am. Ceram. Soc., 103(2020), No. 2, p. 1446. doi: 10.1111/jace.16816
    [56]
    X. Zhong, Y.W. Wang, Y.R. Niu, L.P. Huang, Q.L. Li, and X.B. Zheng, Corrosion behaviors and mechanisms of ytterbium silicate environmental barrier coatings by molten calcium–magnesium–alumino–silicate melts, Corros. Sci., 191(2021), art. No. 109718. doi: 10.1016/j.corsci.2021.109718
    [57]
    R.I. Webster and E.J. Opila, Mixed phase ytterbium silicate environmental-barrier coating materials for improved calcium–magnesium–alumino-silicate resistance, J. Mater. Res., 35(2020), No. 17, p. 2358. doi: 10.1557/jmr.2020.151
    [58]
    S. Krämer, J. Yang, C.G. Levi, and C.A. Johnson, Thermochemical interaction of thermal barrier coatings with molten CaO–MgO–Al2O3–SiO2 (CMAS) deposits, J. Am. Ceram. Soc., 89(2006), No. 10, p. 3167. doi: 10.1111/j.1551-2916.2006.01209.x
    [59]
    Z.G. Pang, X.D. Xing, Q.G. Xue, J.S. Wang, and H.B. Zuo, Influence of Na2O on the thermodynamics properties, viscosity, and structure of CaO–SiO2–MgO–Al2O3–BaO–Na2O slag, Ceram. Int., 48(2022), No. 16, p. 23357. doi: 10.1016/j.ceramint.2022.04.325
    [60]
    Y. Hou, G.H. Zhang, K.C. Chou, and D.Q. Fan, Mixed alkali effect in viscosity of CaO–SiO2–Al2O3–R2O melts, Metall. Mater. Trans. B, 51(2020), No. 3, p. 985. doi: 10.1007/s11663-020-01830-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(433) PDF Downloads(40) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return