Cite this article as: |
Shufang Li, Huilan Guan, Can Zhu, Chaoyuan Sun, Qingya Wei, Jun Yuan, and Yingping Zou, Alkyl chain modulation of asymmetric hexacyclic fused acceptor synergistically with wide bandgap third component for high efficiency ternary organic solar cells, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1713-1719. https://doi.org/10.1007/s12613-024-2903-y |
Yingping Zou E-mail: yingpingzou@csu.edu.cn
Supplementary Information-s12613-024-2903-y.docx |
[1] |
L.L. Feng, J. Yuan, Z.Z. Zhang, et al., Thieno [3,2-b] pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics, ACS Appl. Mater. Interfaces, 9(2017), No. 37, p. 31985. doi: 10.1021/acsami.7b10995
|
[2] |
M. Li, Y.Y. Zhou, J.Q. Zhang, J.S. Song, and Z.S. Bo, Tuning the dipole moments of nonfullerene acceptors with an asymmetric terminal strategy for highly efficient organic solar cells, J. Mater. Chem. A, 7(2019), No. 15, p. 8889. doi: 10.1039/C8TA12530A
|
[3] |
K. Jiang, Q.Y. Wei, J.Y.L. Lai, et al., Alkyl chain tuning of small molecule acceptors for efficient organic solar cells, Joule, 3(2019), No. 12, p. 3020. doi: 10.1016/j.joule.2019.09.010
|
[4] |
S. Liu, J. Yuan, W.Y. Deng, et al., High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder, Nat. Photonics, 14(2020), No. 5, p. 300. doi: 10.1038/s41566-019-0573-5
|
[5] |
C. Zhu, J. Yuan, F.F. Cai, et al., Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell, Energy Environ. Sci., 13(2020), No. 8, p. 2459. doi: 10.1039/D0EE00862A
|
[6] |
S.N. Bao, H. Yang, H.Y. Fan, et al., Volatilizable solid additive-assisted treatment enables organic solar cells with efficiency over 18.8% and fill factor exceeding 80, Adv. Mater., 33(2021), No. 48, art. No. 2105301. doi: 10.1002/adma.202105301
|
[7] |
X.J. Chen, D. Wang, Z.K. Wang, et al., 18.02% efficiency ternary organic solar cells with a small-molecular donor third component, Chem. Eng. J., 424(2021), art. No. 130397. doi: 10.1016/j.cej.2021.130397
|
[8] |
Y. Cui, Y. Xu, H.F. Yao, et al., Single-junction organic photovoltaic cell with 19% efficiency, Adv. Mater., 33(2021), No. 41, art. No. 2102420. doi: 10.1002/adma.202102420
|
[9] |
L.Z. Liu, S.Y. Chen, Y.Y. Qu, et al., Nanographene–osmapentalyne complexes as a cathode interlayer in organic solar cells enhance efficiency over 18%, Adv. Mater., 33(2021), No. 30, art. No. 2101279. doi: 10.1002/adma.202101279
|
[10] |
R.J. Ma, T. Yang, Y.Q. Xiao, et al., Air-processed efficient organic solar cells from aromatic hydrocarbon solvent without solvent additive or post-treatment: Insights into solvent effect on morphology, Energy Environ. Mater., 5(2022), No. 3, p. 977. doi: 10.1002/eem2.12226
|
[11] |
G.U. Kim, C. Sun, D. Lee, et al., Effect of the selective halogenation of small molecule acceptors on the blend morphology and voltage loss of high-performance solar cells, Adv. Funct. Mater., 32(2022), No. 25, art. No. 2201150. doi: 10.1002/adfm.202201150
|
[12] |
G.L. Cai, Z. Chen, X.X. Xia, et al., Pushing the efficiency of high open-circuit voltage binary organic solar cells by vertical morphology tuning, Adv. Sci., 9(2022), No. 14, art. No. 2200578. doi: 10.1002/advs.202200578
|
[13] |
F. Lin, K. Jiang, W. Kaminsky, Z.L. Zhu, and A.K.Y. Jen, A non-fullerene acceptor with enhanced intermolecular π-core interaction for high-performance organic solar cells, J. Am. Chem. Soc., 142(2020), No. 36, p. 15246. doi: 10.1021/jacs.0c07083
|
[14] |
Z.C. Zhou, W.R. Liu, G.Q. Zhou, et al., Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation, Adv. Mater., 32(2020), No. 4, art. No. 1906324. doi: 10.1002/adma.201906324
|
[15] |
Y. Cui, H.F. Yao, J.Q. Zhang, et al., Single-junction organic photovoltaic cells with approaching 18% efficiency, Adv. Mater., 32(2020), No. 19, art. No. 1908205. doi: 10.1002/adma.201908205
|
[16] |
C. Li, J.D. Zhou, J.L. Song, et al., Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells, Nat. Energy, 6(2021), No. 6, p. 605. doi: 10.1038/s41560-021-00820-x
|
[17] |
Z.H. Luo, R.J. Ma, T. Liu, et al., Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%, Joule, 4(2020), No. 6, p. 1236. doi: 10.1016/j.joule.2020.03.023
|
[18] |
H. Chen, H.J. Lai, Z.Y. Chen, et al., 17.1%-efficient eco-compatible organic solar cells from a dissymmetric 3D network acceptor, Angew. Chem. Int. Ed., 60(2021), No. 6, p. 3238. doi: 10.1002/anie.202013053
|
[19] |
F. Liu, L. Zhou, W.R. Liu, et al., Organic solar cells with 18% efficiency enabled by an alloy acceptor: A two-in-one strategy, Adv. Mater., 33(2021), No. 27, art. No. 2100830. doi: 10.1002/adma.202100830
|
[20] |
Y.H. Cai, Y. Li, R. Wang, et al., A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%, Adv. Mater., 33(2021), No. 33, art. No. 2101733. doi: 10.1002/adma.202101733
|
[21] |
T. Zhang, C.B. An, P.Q. Bi, et al., A thiadiazole-based conjugated polymer with ultradeep HOMO level and strong electroluminescence enables 18.6% efficiency in organic solar cell, Adv. Energy Mater., 11(2021), No. 35, art. No. 2101705. doi: 10.1002/aenm.202101705
|
[22] |
G.C. Liu, R.X. Xia, Q.R. Huang, et al., Tandem organic solar cells with 18.7% efficiency enabled by suppressing the charge recombination in front sub-cell, Adv. Funct. Mater., 31(2021), No. 29, art. No. 2103283. doi: 10.1002/adfm.202103283
|
[23] |
J.Q. Wang, Z. Zheng, Y.F. Zu, et al., A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control, Adv. Mater., 33(2021), No. 39, art. No. 2102787. doi: 10.1002/adma.202102787
|
[24] |
Z. Zheng, J.Q. Wang, P.Q. Bi, et al., Tandem organic solar cell with 20.2% efficiency, Joule, 6(2022), No. 1, p. 171. doi: 10.1016/j.joule.2021.12.017
|
[25] |
X.J. Zheng, L.J. Zuo, F. Zhao, et al., High-efficiency ITO-free organic photovoltaics with superior flexibility and upscalability, Adv. Mater., 34(2022), No. 17, art. No. 2200044. doi: 10.1002/adma.202200044
|
[26] |
J. Yao, B.B. Qiu, Z.G. Zhang, et al., Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells, Nat. Commun., 11(2020), No. 1, art. No. 2726. doi: 10.1038/s41467-020-16509-w
|
[27] |
J. Lv, H. Tang, J.M. Huang, et al., Additive-induced miscibility regulation and hierarchical morphology enable 17.5% binary organic solar cells, Energy Environ. Sci., 14(2021), No. 5, p. 3044. doi: 10.1039/D0EE04012F
|
[28] |
X.P. Xu, L.Y. Yu, H. Yan, R.P. Li, and Q. Peng, Highly efficient non-fullerene organic solar cells enabled by a delayed processing method using a non-halogenated solvent, Energy Environ. Sci., 13(2020), No. 11, p. 4381. doi: 10.1039/D0EE02034F
|
[29] |
L. Zhu, M. Zhang, J.Q. Xu, et al., Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology, Nat. Mater., 21(2022), No. 6, p. 656. doi: 10.1038/s41563-022-01244-y
|
[30] |
L.L. Zhan, S.C. Yin, Y.K. Li, et al., Multiphase morphology with enhanced carrier lifetime via quaternary strategy enables high-efficiency thick-film, and large-area organic photovoltaics, Adv. Mater., 34(2022), No. 45, art. No. 2206269. doi: 10.1002/adma.202206269
|
[31] |
J.Q. Zhang, H.S. Tan, X.G. Guo, A. Facchetti, and H. Yan, Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors, Nat. Energy, 3(2018), No. 9, p. 720. doi: 10.1038/s41560-018-0181-5
|
[32] |
Z.Z. Zhang, Y.W. Li, G.L. Cai, Y.H. Zhang, X.H. Lu, and Y.Z. Lin, Selenium heterocyclic electron acceptor with small urbach energy for as-cast high-performance organic solar cells, J. Am. Chem. Soc., 142(2020), No. 44, p. 18741. doi: 10.1021/jacs.0c08557
|
[33] |
F.F. Cai, H.J. Peng, H.G. Chen, et al., An asymmetric small molecule acceptor for organic solar cells with a short circuit current density over 24 mA·cm−2, J. Mater. Chem. A, 8(2020), No. 31, p. 15984. doi: 10.1039/D0TA01636E
|
[34] |
W. Gao, H.T. Fu, Y.X. Li, et al., Asymmetric acceptors enabling organic solar cells to achieve an over 17% efficiency: Conformation effects on regulating molecular properties and suppressing nonradiative energy loss, Adv. Energy Mater., 11(2021), No. 4, art. No. 2003177. doi: 10.1002/aenm.202003177
|
[35] |
Y.Z. Chen, F.J. Bai, Z.X. Peng, et al., Asymmetric alkoxy and alkyl substitution on nonfullerene acceptors enabling high-performance organic solar cells, Adv. Energy Mater., 11(2021), No. 3, art. No. 2003141. doi: 10.1002/aenm.202003141
|
[36] |
L.Y. Su, H.H. Huang, Y.C. Lin, et al., Enhancing long-term thermal stability of non-fullerene organic solar cells using self-assembly amphiphilic dendritic block copolymer interlayers, Adv. Funct. Mater., 31(2021), No. 4, art. No. 2005753. doi: 10.1002/adfm.202005753
|
[37] |
J.S. Song and Z.S. Bo, Asymmetric molecular engineering in recent nonfullerene acceptors for efficient organic solar cells, Chin. Chem. Lett., 34(2023), No. 10, art. No. 108163. doi: 10.1016/j.cclet.2023.108163
|
[38] |
Z.H. Luo, Y. Gao, H.J. Lai, et al., Asymmetric side-chain substitution enables a 3D network acceptor with hydrogen bond assisted crystal packing and enhanced electronic coupling for efficient organic solar cells, Energy Environ. Sci., 15(2022), No. 11, p. 4601. doi: 10.1039/D2EE01848A
|
[39] |
X. Zhang, C.Q. Li, L.Q. Qin, et al., Side-chain engineering for enhancing the molecular rigidity and photovoltaic performance of noncovalently fused-ring electron acceptors, Angew. Chem. Int. Ed., 60(2021), No. 32, p. 17720. doi: 10.1002/anie.202106753
|
[40] |
Y.L. Yin, L.L. Zhan, M. Liu, et al., Boosting photovoltaic performance of ternary organic solar cells by integrating a multi-functional guest acceptor, Nano Energy, 90(2021), art. No. 106538. doi: 10.1016/j.nanoen.2021.106538
|
[41] |
L.L. Zhan, S.X. Li, Y.K. Li, et al., Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics, Joule, 6(2022), No. 3, p. 662. doi: 10.1016/j.joule.2022.02.001
|
[42] |
X.W. Guo, D.Q. Li, Y.X. Zhang, et al., Understanding the effect of N2200 on performance of J71:ITIC bulk heterojunction in ternary non-fullerene solar cells, Org. Electron., 71(2019), p. 65. doi: 10.1016/j.orgel.2019.05.004
|
[43] |
J. Lee, S.M. Lee, S. Chen, et al., Organic photovoltaics with multiple donor–acceptor pairs, Adv. Mater., 31(2019), No. 20, art. No. 1804762. doi: 10.1002/adma.201804762
|
[44] |
F.F. Cai, C. Zhu, J. Yuan, et al., Efficient organic solar cells based on a new “Y-series” non-fullerene acceptor with an asymmetric electron-deficient-core, Chem. Commun., 56(2020), No. 31, p. 4340. doi: 10.1039/C9CC10076H
|
[45] |
L.G. Xiao, M.A. Kolaczkowski, Y.G. Min, and Y. Liu, Substitution effect on thiobarbituric acid end groups for high open-circuit voltage non-fullerene organic solar cells, ACS Appl. Mater. Interfaces, 12(2020), No. 37, p. 41852. doi: 10.1021/acsami.0c11828
|
[46] |
N.Y. Doumon, L.L. Yang, and F. Rosei, Ternary organic solar cells: A review of the role of the third element, Nano Energy, 94(2022), art. No. 106915. doi: 10.1016/j.nanoen.2021.106915
|
[47] |
L.C. Chang, M. Sheng, L.P. Duan, and A. Uddin, Ternary organic solar cells based on non-fullerene acceptors: A review, Org. Electron., 90(2021), art. No. 106063. doi: 10.1016/j.orgel.2021.106063
|
[48] |
Y.J. Cheng, B. Huang, X.X. Huang, et al., Oligomer-assisted photoactive layers enable >18% efficiency of organic solar cells, Angew. Chem. Int. Ed., 61(2022), No. 21, art. No. e202200329. doi: 10.1002/anie.202200329
|
[49] |
Z.P. Yu, Z.X. Liu, F.X. Chen, et al., Simple non-fused electron acceptors for efficient and stable organic solar cells, Nat. Commun., 10(2019), art. No. 2152. doi: 10.1038/s41467-019-10098-z
|
[50] |
J. Yuan, C.J. Zhang, H.G. Chen, et al., Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells, Sci. China Chem., 63(2020), No. 8, p. 1159. doi: 10.1007/s11426-020-9747-9
|
[51] |
B. Qiu, Z. Chen, S. Qin, et al., Highly efficient all-small-molecule organic solar cells with appropriate active layer morphology by side chain engineering of donor molecules and thermal annealing, Adv. Mater., 32(2020), No. 21, art. No. 1908373. doi: 10.1002/adma.201908373
|
[52] |
S.X. Li, L.L. Zhan, C.K. Sun, et al., Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets, J. Am. Chem. Soc., 141(2019), No. 7, p. 3073. doi: 10.1021/jacs.8b12126
|
[53] |
J.N. Song, M. Zhang, M. Yuan, Y.H. Qian, Y.M. Sun, and F. Liu, Morphology characterization of bulk heterojunction solar cells, Small Methods, 2(2018), No. 3, art. No. 1700229. doi: 10.1002/smtd.201700229
|