Shuo Liu, Peng Zhang, Bin Wang, Kaizhong Wang, Zikuan Xu, Fangzhong Hu, Xin Bai, Qiqiang Duan,  and Zhefeng Zhang, Instrumented oscillographic study on impact toughness of an axle steel DZ2 with different tempering temperatures, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1590-1598. https://doi.org/10.1007/s12613-024-2908-6
Cite this article as:
Shuo Liu, Peng Zhang, Bin Wang, Kaizhong Wang, Zikuan Xu, Fangzhong Hu, Xin Bai, Qiqiang Duan,  and Zhefeng Zhang, Instrumented oscillographic study on impact toughness of an axle steel DZ2 with different tempering temperatures, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1590-1598. https://doi.org/10.1007/s12613-024-2908-6
Research Article

Instrumented oscillographic study on impact toughness of an axle steel DZ2 with different tempering temperatures

+ Author Affiliations
  • Corresponding authors:

    Peng Zhang    E-mail: pengzhang@imr.ac.cn

    Zhefeng Zhang    E-mail: zhfzhang@imr.ac.cn

  • Received: 5 September 2023Revised: 29 March 2024Accepted: 15 April 2024Available online: 16 April 2024
  • Compared with the conventional Charpy impact test method, the oscillographic impact test can help in the behavioral analysis of materials during the fracture process. In this study, the trade-off relationship between the strength and toughness of a DZ2 axle steel at various tempering temperatures and the cause of the improvement in impact toughness was evaluated. The tempering process dramatically influenced carbide precipitation behavior, which resulted in different aspect ratios of carbides. Impact toughness improved along with the rise in tempering temperature mainly due to the increase in energy required in impact crack propagation. The characteristics of the impact crack propagation process were studied through a comprehensive analysis of stress distribution, oscilloscopic impact statistics, fracture morphology, and carbide morphology. The poor impact toughness of low-tempering-temperature specimens was attributed to the increased number of stress concentration points caused by carbide morphology in the small plastic zone during the propagation process, which resulted in a mixed distribution of brittle and ductile fractures on the fracture surface.
  • loading
  • [1]
    Y. Luo, S.C. Wu, X. Zhao, et al., Three-dimensional correlation of damage criticality with the defect size and lifetime of externally impacted 25CrMo4 steel, Mater. Des., 195(2020), art. No. 109001. doi: 10.1016/j.matdes.2020.109001
    [2]
    D.F. Zeng, L.T. Lu, Y.H. Gong, N. Zhang, and Y.B. Gong, Optimization of strength and toughness of railway wheel steel by alloy design, Mater. Des., 92(2016), p. 998. doi: 10.1016/j.matdes.2015.12.096
    [3]
    Z.W. Xu, S.C. Wu, and X.S. Wang, Fatigue evaluation for high-speed railway axles with surface scratch, Int. J. Fatigue, 123(2019), p. 79. doi: 10.1016/j.ijfatigue.2019.02.016
    [4]
    A. Sorochak, P. Maruschak, and O. Prentkovskis, Cyclic fracture toughness of railway axle and mechanisms of its fatigue fracture, Transp. Telecommun. J., 16(2015), No. 2, p. 158.
    [5]
    H.F. Li, Q.Q. Duan, P. Zhang, X.H. Zhou, B. Wang, and Z.F. Zhang, The quantitative relationship between fracture toughness and impact toughness in high-strength steels, Eng. Fract. Mech., 211(2019), p. 362. doi: 10.1016/j.engfracmech.2019.03.003
    [6]
    J. Wang, W. Li, X.D. Zhu, and L.Q. Zhang, Effect of martensite morphology and volume fraction on the low-temperature impact toughness of dual-phase steels, Mater. Sci. Eng. A, 832(2022), art. No. 142424. doi: 10.1016/j.msea.2021.142424
    [7]
    Z. Li, Y. Zhang, Z.B. Zhang, et al., A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites, Nat. Commun., 13(2022), art. No. 5581. doi: 10.1038/s41467-022-33261-5
    [8]
    B.P. Rocky, C.R. Weinberger, S.R. Daniewicz, and G.B. Thompson, Carbide nanoparticle dispersion techniques for metal powder metallurgy, Metals, 11(2021), No. 6, art. No. 871. doi: 10.3390/met11060871
    [9]
    A. Vilinska, S. Ponnurangam, I. Chernyshova, et al., Stabilization of Silicon Carbide (SiC) micro- and nanoparticle dispersions in the presence of concentrated electrolyte, J. Colloid Interface Sci., 423(2014), p. 48. doi: 10.1016/j.jcis.2014.02.007
    [10]
    A.G. Ning, W.W. Mao, X.C. Chen, H.J. Guo, and J. Guo, Precipitation behavior of carbides in H13 hot work die steel and its strengthening during tempering, Metals, 7(2017), No. 3, art. No. 70. doi: 10.3390/met7030070
    [11]
    S. Takebayashi, K. Ushioda, N. Yoshinaga, and S. Ogata, Effect of carbide size distribution on the impact toughness of tempered martensitic steels with two different prior austenite grain sizes evaluated by instrumented charpy test, Mater. Trans., 54(2013), No. 7, p. 1110. doi: 10.2320/matertrans.M2013079
    [12]
    Y.R. Im, Y.J. Oh, B.J. Lee, J.H. Hong, and H.C. Lee, Effects of carbide precipitation on the strength and Charpy impact properties of low carbon Mn–Ni–Mo bainitic steels, J. Nucl. Mater., 297(2001), No. 2, p. 138. doi: 10.1016/S0022-3115(01)00610-9
    [13]
    X. Yao, J. Huang, Y.X. Qiao, M.Y. Sun, B. Wang, and B. Xu, Precipitation behavior of carbides and its effect on the microstructure and mechanical properties of 15CrNi3MoV steel, Metals, 12(2022), No. 10, art. No. 1758. doi: 10.3390/met12101758
    [14]
    D. Kim, R. Jiang, and P.A.S. Reed, Microstructural and oxidation effects on fatigue crack initiation mechanisms in a turbine disc alloy, J. Mater. Sci., 58(2023), No. 4, p. 1869. doi: 10.1007/s10853-022-08120-9
    [15]
    M.A. Mohtadi-Bonab, Effects of different parameters on initiation and propagation of stress corrosion cracks in pipeline steels: A review, Metals, 9(2019), No. 5, art. No. 590. doi: 10.3390/met9050590
    [16]
    M.W. Mahoney and N.E. Paton, The effect of carbide precipitation on fatigue crack propagation in type 316 stainless steel, Nucl. Technol., 23(1974), No. 1, p. 53. doi: 10.13182/NT74-A31433
    [17]
    N.A. Giang, M. Kuna, and G. Hütter, Influence of carbide particles on crack initiation and propagation with competing ductile-brittle transition in ferritic steel, Theor. Appl. Fract. Mech., 92(2017), p. 89. doi: 10.1016/j.tafmec.2017.05.015
    [18]
    W. Wciślik and R. Pała, Some microstructural aspects of ductile fracture of metals, Materials, 14(2021), No. 15, art. No. 4321. doi: 10.3390/ma14154321
    [19]
    S.H. Kim, H. Kim, and N.J. Kim, Brittle intermetallic compound makes ultrastrong low-density steel with large ductility, Nature, 518(2015), No. 7537, p. 77. doi: 10.1038/nature14144
    [20]
    S.Y. Han, S.Y. Shin, C.H. Seo, et al., Effects of Mo, Cr, and V additions on tensile and charpy impact properties of API X80 pipeline steels, Metall. Mater. Trans. A, 40(2009), No. 8, p. 1851. doi: 10.1007/s11661-009-9884-3
    [21]
    B. Wang, P. Zhang, Q.Q. Duan, et al., Optimizing the fatigue strength of 18Ni maraging steel through ageing treatment, Mater. Sci. Eng. A, 707(2017), p. 674. doi: 10.1016/j.msea.2017.09.107
    [22]
    A. Zavdoveev, V. Poznyakov, T. Baudin, et al., Effect of heat treatment on the mechanical properties and microstructure of HSLA steels processed by various technologies, Mater. Today Commun., 28(2021), art. No. 102598. doi: 10.1016/j.mtcomm.2021.102598
    [23]
    Y. Li, Y. Lian, J.K. Li, T.T. He, and Y. Zou, Effect of supersonic fine particle bombardment on the surface integrity and wear performance of DZ2 axle steel, Surf. Coat. Technol., 435(2022), art. No. 128250. doi: 10.1016/j.surfcoat.2022.128250
    [24]
    Y. Zou, J.K. Li, X. Liu, et al., Effect of multiple ultrasonic nanocrystal surface modification on surface integrity and wear property of DZ2 axle steel, Surf. Coat. Technol., 412(2021), art. No. 127012. doi: 10.1016/j.surfcoat.2021.127012
    [25]
    J.W. Zhang, Y.G. Cao, C.G. Zhang, Z.D. Li, and W.X. Wang, Effect of Nb addition on microstructure and mechanical properties of 25CrNiMoV (DZ2) steel for high-speed railway axles, J. Iron Steel Res. Int., 29(2022), No. 5, p. 802. doi: 10.1007/s42243-021-00613-2
    [26]
    F. Tioguem, F. N’Guyen, M. Mazière, F. Tankoua, A. Galtier, and A.F. Gourgues Lorenzon, advanced quantification of the carbide spacing and correlation with dimple size in a high-strength medium carbon martensitic steel, Mater. Charact., 167(2020), art. No. 110531. doi: 10.1016/j.matchar.2020.110531
    [27]
    S.H. Talebi, M. Jahazi, and H. Melkonyan, Retained austenite decomposition and carbide precipitation during isothermal tempering of a medium-carbon low-alloy bainitic steel, Materials, 11(2018), No. 8, art. No. 1441. doi: 10.3390/ma11081441
    [28]
    Y.X. Xie, X.N. Cheng, J.B. Wei, and R. Luo, Characterization of carbide precipitation during tempering for quenched dievar steel, Materials, 15(2022), No. 18, art. No. 6448. doi: 10.3390/ma15186448
    [29]
    P. Han, Z.P. Liu, Z.J. Xie, et al., Influence of band microstructure on carbide precipitation behavior and toughness of 1 GPa-grade ultra-heavy gauge low-alloy steel, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1329. doi: 10.1007/s12613-023-2597-6
    [30]
    Q.Q. Duan, R.T. Qu, P. Zhang, Z.J. Zhang, and Z.F. Zhang, Intrinsic impact toughness of relatively high strength alloys, Acta Mater., 142(2018), p. 226. doi: 10.1016/j.actamat.2017.09.064
    [31]
    M.D. Mulholland and D.N. Seidman, Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel, Acta Mater., 59(2011), No. 5, p. 1881. doi: 10.1016/j.actamat.2010.11.054
    [32]
    M. Zhou, L.X. Du, and X.H. Liu, Relationship among microstructure and properties and heat treatment process of ultra-high strength X120 pipeline steel, J. Iron Steel Res. Int., 18(2011), No. 3, p. 59. doi: 10.1016/S1006-706X(11)60038-1
    [33]
    F.C. An, J.J. Wang, S.X. Zhao, and C.M. Liu, Tailoring cementite precipitation and mechanical properties of quenched and tempered steel by nickel partitioning between cementite and ferrite, Mater. Sci. Eng. A, 802(2021), art. No. 140686. doi: 10.1016/j.msea.2020.140686
    [34]
    P. Zhang, S.X. Li, and Z.F. Zhang, General relationship between strength and hardness, Mater. Sci. Eng. A, 529(2011), p. 62. doi: 10.1016/j.msea.2011.08.061
    [35]
    F. Szuecs, C.P. Kim, and W.L. Johnson, Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite, Acta Mater., 49(2001), No. 9, p. 1507. doi: 10.1016/S1359-6454(01)00068-4
    [36]
    L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel, Mater. Sci. Eng. A, 529(2011), p. 192. doi: 10.1016/j.msea.2011.09.017
    [37]
    N. Vlajic, A. Chijioke, and E. Lucon, Design considerations to improve charpy instrumented strikers, J. Res. Natl. Inst. Stand. Technol., 125(2020), art. No. 125010. doi: 10.6028/jres.125.010
    [38]
    S.H. Hashemi, Apportion of Charpy energy in API 5L grade X70 pipeline steel, Int. J. Press. Vessels Pip., 85(2008), No. 12, p. 879. doi: 10.1016/j.ijpvp.2008.04.011
    [39]
    J.R. Rice and R. Thomson, Ductile versus brittle behaviour of crystals, Philos. Mag. A, 29(1974), No. 1, p. 73. doi: 10.1080/14786437408213555
    [40]
    P.F. Thomason, Ductile fracture by the growth and coalescence of microvoids of non-uniform size and spacing, Acta Metall. Mater., 41(1993), No. 7, p. 2127. doi: 10.1016/0956-7151(93)90382-3
    [41]
    L. Wang, X. Du, and N.S. Choi, Effects of Notch radius and thickness on the tensile strength and fracture mechanisms of Al6061–T6 plate specimens, Int. J. Precis. Eng. Manuf., 23(2022), No. 2, p. 177. doi: 10.1007/s12541-021-00613-y
    [42]
    L. Brackmann, D. Wingender, S. Weber, D. Balzani, and A. Röttger, Influence of hard phase size and spacing on the fatigue crack propagation in tool steels—Numerical simulation and experimental validation, Fatigue Fract. Eng. Mater. Struct., 46(2023), No. 10, p. 3872. doi: 10.1111/ffe.14107
    [43]
    Q. Feng, Y.J. Wang, Y.N. Zeng, et al., Unraveling the effects of Cr interface segregation on precipitation mechanism and mechanical properties of MC carbides in high carbon chromium bearing steels, J. Mater. Res. Technol., 27(2023), p. 2443. doi: 10.1016/j.jmrt.2023.10.091
    [44]
    J.P. Hanson, A. Bagri, J. Lind, et al., Crystallographic character of grain boundaries resistant to hydrogen-assisted fracture in Ni-base alloy 725, Nat. Commun., 9(2018), No. 1, art. No. 3386. doi: 10.1038/s41467-018-05549-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(248) PDF Downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return