Yumeng Wang, Qinyi Guo, Bin Hu, and Haiwen Luo, Effect of Nb–V microalloying on the hot deformation behavior of medium Mn steels, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2914-8
Cite this article as:
Yumeng Wang, Qinyi Guo, Bin Hu, and Haiwen Luo, Effect of Nb–V microalloying on the hot deformation behavior of medium Mn steels, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2914-8
Research Article

Effect of Nb–V microalloying on the hot deformation behavior of medium Mn steelsEffect of Nb–V microalloying on the hot deformation behavior of medium Mn steels

+ Author Affiliations
  • Corresponding author:

    Haiwen Luo    E-mail: luohaiwen@ustb.edu.cn

  • Received: 8 March 2024Revised: 10 April 2024Accepted: 15 April 2024Available online: 16 April 2024
  • The influence of Nb–V microalloying on the hot deformation behavior and microstructures of medium Mn steel (MMS) was investigated by uniaxial hot compression tests. By establishing the constitutive equations for simulating the measured flow curves, we successfully constructed deformation activation energy (Q) maps and processing maps for identifying the region of flow instability. We concluded the following consequences of Nb–V alloying for MMS. (i) The critical strain increases and the increment diminishes with the increasing deformation temperature, suggesting that NbC precipitates more efficiently retard dynamic recrystallization (DRX) in MMS compared with solute Nb. (ii) The deformation activation energy of MMS is significantly increased and even higher than that of some reported high Mn steels, suggesting that its ability to retard DRX is greater than that of the high Mn content. (iii) The hot workability of MMS is improved by narrowing the hot processing window for the unstable flow stress, in which fine recrystallized and coarse unrecrystallized grains are present.
  • loading
  • [1]
    A. Grajcar, R. Kuziak, and W. Zalecki, Third generation of AHSS with increased fraction of retained austenite for the automotive industry, Arch. Civ. Mech. Eng., 12(2012), No. 3, p. 334. doi: 10.1016/j.acme.2012.06.011
    [2]
    B. Hu, H. Sui, Q.H. Wen, Z. Wang, A. Gramlich, and H.W. Luo, Review on the plastic instability of medium-Mn steels for identifying the formation mechanisms of Lüders and Portevin–Le Chatelier bands, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1285. doi: 10.1007/s12613-023-2751-1
    [3]
    B.B. He, B. Hu, H.W. Yen, et al., High dislocation density-induced large ductility in deformed and partitioned steels, Science, 357(2017), No. 6355, p. 1029. doi: 10.1126/science.aan0177
    [4]
    S.S. Li and H.W. Luo, Medium-Mn steels for hot forming application in the automotive industry, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 741. doi: 10.1007/s12613-020-2179-9
    [5]
    J.W. Zhao and Z.Y. Jiang, Thermomechanical processing of advanced high strength steels, Prog. Mater. Sci., 94(2018), p. 174. doi: 10.1016/j.pmatsci.2018.01.006
    [6]
    Y.J. Wang, S. Zhao, R.B. Song, and B. Hu, Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 422. doi: 10.1007/s12613-020-2206-x
    [7]
    G.Z. Quan, X. Wang, Y.L. Li, and L. Zhang, Analytical descriptions of dynamic softening mechanisms for Ti–13Nb–13Zr biomedical alloy in single phase and two phase regions, Arch. Metall. Mater., 62(2017), No. 4, p. 2029. doi: 10.1515/amm-2017-0302
    [8]
    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 60(2014), p. 130. doi: 10.1016/j.pmatsci.2013.09.002
    [9]
    J. Han, S.J. Lee, J.G. Jung, and Y.K. Lee, The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel, Acta Mater., 78(2014), p. 369. doi: 10.1016/j.actamat.2014.07.005
    [10]
    H.B. Feng, S.H. Li, K.X. Wang, et al., Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel, Int. J. Miner. Metall. Mater., 31(2024), No. 5, p. 833. doi: 10.1007/s12613-023-2805-4
    [11]
    X.Y. Sun, M. Zhang, Y. Wang, Y.Y. Sun, and Y.H. Wang, Kinetics and numerical simulation of dynamic recrystallization behavior of medium Mn steel in hot working, Steel Res. Int., 91(2020), No. 7, art. No. 1900675. doi: 10.1002/srin.201900675
    [12]
    X.Z. Liu, Y. Sun, X.Y. Zhang, H.P. Li, Z.C. Li, and L.F. He, Thermal deformation behavior and microstructure evolution of Fe−8.5Mn−1.5Al light-weight medium manganese steel, J. Mater. Res. Technol., 26(2023), p. 605.
    [13]
    T. Niu, Y.L. Kang, H.W. Gu, Y.Q. Yin, M.L. Qiao, and J.X. Jiang, Effect of Nb on the dynamic recrystallization behavior of high-grade pipeline steels, Int. J. Miner. Metall. Mater., 17(2010), No. 6, p. 742. doi: 10.1007/s12613-010-0383-8
    [14]
    B.H. Chen and H. Yu, Hot ductility behavior of V–N and V–Nb microalloyed steels, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 525. doi: 10.1007/s12613-012-0590-6
    [15]
    Y. Luo, H.Z. Lu, N. Min, W. Li, and X.J. Jin, Effect of Mo and Nb on mechanical properties and hydrogen embrittlement of hot-rolled medium-Mn steels, Mater. Sci. Eng. A, 844(2022), art. No. 143108. doi: 10.1016/j.msea.2022.143108
    [16]
    R.S. Varanasi, B. Gault, and D. Ponge, Effect of Nb micro-alloying on austenite nucleation and growth in a medium manganese steel during intercritical annealing, Acta Mater., 229(2022), art. No. 117786. doi: 10.1016/j.actamat.2022.117786
    [17]
    Y.S. Zhu, B. Hu, and H.W. Luo, Influence of Nb and V on microstructure and mechanical properties of hot–rolled medium Mn steels, Steel Res. Int., 89(2018), No. 9, art. No. 1700389. doi: 10.1002/srin.201700389
    [18]
    P.P. Singh, S. Ghosh, and S. Mula, Flow stress modeling and microstructural characteristics of a low carbon Nb–V microalloyed steel, Mater. Today Commun., 30(2022), art. No. 103156. doi: 10.1016/j.mtcomm.2022.103156
    [19]
    N. Tsuji, Y. Matsubara, and Y. Saito, Dynamic recrystallization of ferrite in interstitial free steel, Scripta. Mater., 37(1997), No. 4, p. 477. doi: 10.1016/S1359-6462(97)00123-1
    [20]
    X.H. Wang, Z.B. Liu, and H.W. Luo, Hot deformation characterization of ultrahigh strength stainless steel through processing maps generated using different instability criteria, Mater. Charact., 131(2017), p. 480. doi: 10.1016/j.matchar.2017.07.041
    [21]
    K.M. Liu, Z.Y. Jiang, H.T. Zhou, D.P. Lu, A. Atrens, and Y.L. Yang, Effect of heat treatment on the microstructure and properties of deformation-processed Cu–7Cr in situ composites, J. Mater. Eng. Perform., 24(2015), No. 11, p. 4340. doi: 10.1007/s11665-015-1747-z
    [22]
    D.L. Yin, K.F. Zhang, G.F. Wang, and W.B. Han, Warm deformation behavior of hot-rolled AZ31 Mg alloy, Mater. Sci. Eng. A, 392(2005), No. 1-2, p. 320. doi: 10.1016/j.msea.2004.09.039
    [23]
    E.I. Poliak and J.J. Jonas, A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization, Acta Mater., 44(1996), No. 1, p. 127. doi: 10.1016/1359-6454(95)00146-7
    [24]
    G.J. Richardson, C.M. Sellars, and W.J.M. Tegart, Recrystallization during creep of nickel, Acta Metall., 14(1966), No. 10, p. 1225. doi: 10.1016/0001-6160(66)90240-9
    [25]
    C.M. Sellars and W.J.McG. Tegart, Hot workability, Int. Metall. Rev., 17(1972), No. 1, p. 1. doi: 10.1179/095066072790137765
    [26]
    H. Mirzadeh, J.M. Cabrera, J.M. Prado, and A. Najafizadeh, Hot deformation behavior of a medium carbon microalloyed steel, Mater. Sci. Eng. A, 528(2011), No. 10-11, p. 3876. doi: 10.1016/j.msea.2011.01.098
    [27]
    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, et al., Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242, Metall. Trans. A, 15(1984), No. 10, p. 1883. doi: 10.1007/BF02664902
    [28]
    H. Mirzadeh, A. Najafizadeh, and M. Moazeny, Flow curve analysis of 17-4 PH stainless steel under hot compression test, Metall. Mater. Trans. A, 40(2009), No. 12, p. 2950. doi: 10.1007/s11661-009-0029-5
    [29]
    H.J. McQueen and N.D. Ryan, Constitutive analysis in hot working, Mater. Sci. Eng. A, 322(2002), No. 1-2, p. 43. doi: 10.1016/S0921-5093(01)01117-0
    [30]
    H.J. McQueen and D.L. Bourell, Hot workability of metals and alloys, JOM, 39(1987), No. 9, p. 28. doi: 10.1007/BF03257647
    [31]
    J.Q. Zhang, H.S. Di, X.Y. Wang, Y. Cao, J.C. Zhang, and T.J. Ma, Constitutive analysis of the hot deformation behavior of Fe–23Mn–2Al–0.2C twinning induced plasticity steel in consideration of strain, Mater. Des., 44(2013), p. 354. doi: 10.1016/j.matdes.2012.08.004
    [32]
    D.J. Li, Y.R. Feng, Z.F. Yin, et al. Hot deformation behavior of an austenitic Fe–20Mn–3Si–3Al transformation induced plasticity steel, Mater. Des., 34(2012), p. 713. doi: 10.1016/j.matdes.2011.05.031
    [33]
    H.J. McQueen, S. Yue, N.D. Ryan, and E. Fry, Hot working characteristics of steels in austenitic state, J. Mater. Process. Technol., 53(1995), No. 1-2, p. 293. doi: 10.1016/0924-0136(95)01987-P
    [34]
    F. Reyes-Calderón, I. Mejía, and J.M. Cabrera, Hot deformation activation energy (QHW) of austenitic Fe–22Mn–1.5Al–1.5Si–0.4C TWIP steels microalloyed with Nb, V, and Ti, Mater. Sci. Eng. A, 562(2013), p. 46. doi: 10.1016/j.msea.2012.10.091
    [35]
    A. Momeni, The physical interpretation of the activation energy for hot deformation of Ni and Ni–30Cu alloys, J. Mater. Res., 31(2016), No. 8, p. 1077. doi: 10.1557/jmr.2016.81
    [36]
    D. Samantaray, S. Mandal, V. Kumar, S.K. Albert, A.K. Bhaduri, and T. Jayakumar, Optimization of processing parameters based on high temperature flow behavior and microstructural evolution of a nitrogen enhanced 316L(N) stainless steel, Mater. Sci. Eng. A, 552(2012), p. 236. doi: 10.1016/j.msea.2012.05.036
    [37]
    S. Wang, L.G. Hou, J.R. Luo, J.S. Zhang, and L.Z. Zhuang, Characterization of hot workability in AA 7050 aluminum alloy using activation energy and 3-D processing map, J. Mater. Process. Technol., 225(2015), p. 110. doi: 10.1016/j.jmatprotec.2015.05.018
    [38]
    Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of hot deformation for microstructural control, Int. Mater. Rev., 43(1998), No. 6, p. 243. doi: 10.1179/imr.1998.43.6.243
    [39]
    Y. Sun, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, Y. Shu, and Y.G. Zhou, Research on the hot deformation behavior of Ti40 alloy using processing map, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1205. doi: 10.1016/j.msea.2010.10.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(293) PDF Downloads(29) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return