Dapeng Chen, Shenghua Yin, Weiguo Long, Rongfu Yan, Yufei Zhang, Zepeng Yan, Leiming Wang, and Wei Chen, Heterogeneous information phase space reconstruction and stability prediction of filling body–surrounding rock combination, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1500-1511. https://doi.org/10.1007/s12613-024-2916-6
Cite this article as:
Dapeng Chen, Shenghua Yin, Weiguo Long, Rongfu Yan, Yufei Zhang, Zepeng Yan, Leiming Wang, and Wei Chen, Heterogeneous information phase space reconstruction and stability prediction of filling body–surrounding rock combination, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1500-1511. https://doi.org/10.1007/s12613-024-2916-6
Research Article

Heterogeneous information phase space reconstruction and stability prediction of filling body–surrounding rock combination

+ Author Affiliations
  • Corresponding author:

    Shenghua Yin    E-mail: csuysh@126.com

  • Received: 27 November 2023Revised: 2 April 2024Accepted: 17 April 2024Available online: 18 April 2024
  • Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions. Current monitoring data processing methods cannot fully consider the complexity of monitoring objects, the diversity of monitoring methods, and the dynamics of monitoring data. To solve this problem, this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations. The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress, multipoint displacement meter, and inclinometer. Varied information, such as the stress and displacement of the filling body–surrounding rock combination, was continuously obtained. Combined with the average mutual information method and the false nearest neighbor point method, the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed. In this paper, the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination. The evaluated distances (ED) revealed a high sensitivity to the stability of the filling body–surrounding rock combination. The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine. The moments of mutation in these time series were at least 3 months ahead of the roadway return dates. In the ED prediction experiments, the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models (long short-term memory and Transformer). Furthermore, the root-mean-square error distribution of the prediction results peaked at 0.26, thus outperforming the no-prediction method in 70% of the cases.
  • loading
  • [1]
    S.H. Yin, Z.P. Yan, X. Chen, R.F. Yan, D.P. Chen, and J.W. Chen, Mechanical properties of cemented tailings and waste-rock backfill (CTWB) materials: Laboratory tests and deep learning modeling, Constr. Build. Mater., 369(2023), art. No. 130610. doi: 10.1016/j.conbuildmat.2023.130610
    [2]
    Z.L. Xue, H.K. Sun, D.Q. Gan, Z.P. Yan, and Z.Y. Liu, Wall slip behavior of cemented paste backfill slurry during pipeline based on noncontact experimental detection, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1515. doi: 10.1007/s12613-023-2610-0
    [3]
    L.H. Yang, J.C. Li, H.B. Liu, et al., Systematic review of mixing technology for recycling waste tailings as cemented paste backfill in mines in China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1430. doi: 10.1007/s12613-023-2609-6
    [4]
    C. Hou, W.C. Zhu, B.X. Yan, K. Guan, and L.L. Niu, Analytical and experimental study of cemented backfill and pillar interactions, Int. J. Geomech., 19(2019), No. 8, art. No. 04019080. doi: 10.1061/(ASCE)GM.1943-5622.0001441
    [5]
    Q.H. Ma, G.S. Liu, X.C. Yang, and L.J. Guo, Physical model investigation on effects of drainage condition and cement addition on consolidation behavior of tailings slurry within backfilled stopes, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1490. doi: 10.1007/s12613-023-2642-5
    [6]
    Y.Y. Li, W.J. Guo, H.Q. Zhang, and Z.J. Wei, The application of combined GPS.RTK with electronic level on high-precision surface monitoring, Adv. Mater. Res., 718-720(2013), p. 1191. doi: 10.4028/www.scientific.net/AMR.718-720.1191
    [7]
    Y. Chen, J. Li, H.Z. Li, et al., Revealing land surface deformation over the Yineng backfilling mining area, China, by integrating distributed scatterer SAR interferometry and a mining subsidence model, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 16(2023), p. 3611. doi: 10.1109/JSTARS.2023.3250419
    [8]
    H.D. Fan, Q. Xu, Z.B. Hu, and S. Du, Using temporarily coherent point interferometric synthetic aperture radar for land subsidence monitoring in a mining region of Western China, J. Appl. Remote Sens, 11(2017), No. 2, art. No. 026003. doi: 10.1117/1.JRS.11.026003
    [9]
    C.D. Maio, G. Fornaro, D. Gioia, D. Reale, M. Schiattarella, and R. Vassallo, In situ and satellite long-term monitoring of the Latronico landslide, Italy: Displacement evolution, damage to buildings, and effectiveness of remedial works, Eng. Geol., 245(2018), p. 218. doi: 10.1016/j.enggeo.2018.08.017
    [10]
    W. Lei, S.J. Zhu, C. Jiang, et al., Research on 3D laser scanning monitoring method for mining subsidence based on the auxiliary for probability integral method, KSCE J. Civ. Eng., 25(2021), No. 11, p. 4403. doi: 10.1007/s12205-021-0053-6
    [11]
    Y.Y. Gu, D.W. Zhou, D.M. Zhang, K. Wu, and B.H. Zhou, Study on subsidence monitoring technology using terrestrial 3D laser scanning without a target in a mining area: An example of Wangjiata coal mine, China, Bull. Eng. Geol. Environ., 79(2020), No. 7, p. 3575. doi: 10.1007/s10064-020-01767-1
    [12]
    C. Liao, W.L. Luo, D.S. Cai, and M. Li, In situ measurement of rockfill dam settlement using fiber optic gyroscope monitoring system, Struct. Contr. Health Monit., 29(2022), No. 4, art. No. e2917.
    [13]
    R.C.S.B. Allil, L.A.C. Lima, A.S. Allil, and M.M. Werneck, FBG-based inclinometer for landslide monitoring in tailings dams, IEEE Sens. J., 21(2021), No. 15, p. 16670. doi: 10.1109/JSEN.2021.3081025
    [14]
    C. Zhang, S.Y. Zhang, and J.Y. Cao, In-place fiber-optic inclinometer based on a vertical cantilever beam and dual FBGs, Opt. Laser Technol., 159(2023), art. No. 108933. doi: 10.1016/j.optlastec.2022.108933
    [15]
    Y.Q. Wang, S.B. Zhang, L.L. Chen, Y.L. Xie, and Z.F. Wang, Field monitoring on deformation of high rock slope during highway construction: A case study in Wenzhou, China, Int. J. Distrib. Sens. Netw., 15(2019), No. 12, art. No. 1550147719895953.
    [16]
    V. Bennett, T. Abdoun, and M. Barendse, Evaluation of soft clay field consolidation using MEMS-based in-place inclinometer–accelerometer array, Geotech. Test. J., 38(2015), No. 3, p. 290. doi: 10.1520/GTJ20140048
    [17]
    D.W. Ha, J.M. Kim, Y. Kim, and H.S. Park, Development and application of a wireless MEMS-based borehole inclinometer for automated measurement of ground movement, Autom. Constr., 87(2018), p. 49. doi: 10.1016/j.autcon.2017.12.011
    [18]
    M. Khan, X.Q. He, J. Guo, and D.Z. Song, Accurate prediction of indicators for engineering failures in complex mining environments, Eng. Fail. Anal., 155(2024), art. No. 107736. doi: 10.1016/j.engfailanal.2023.107736
    [19]
    H.W. Jia, B.X. Yan, Z. Yang, and E. Yilmaz, Identification of goaf instability under blasting disturbance using microseismic monitoring technology, Geomech. Geophys. Geo Energy Geo Resour., 9(2023), No. 1, art. No. 142. doi: 10.1007/s40948-023-00681-6
    [20]
    X.G. Cheng, W. Qiao, and H. He, Study on deep learning methods for coal burst risk prediction based on mining-induced seismicity quantification, Geomech. Geophys. Geo Energy Geo Resour., 9(2023), No. 1, art. No. 145. doi: 10.1007/s40948-023-00684-3
    [21]
    T.W. Lan, X.T. Guo, Z.J. Zhang, and M.W. Liu, Prediction of microseismic events in rock burst mines based on MEA-BP neural network, Sci. Rep., 13(2023), No. 1, art. No. 9523. doi: 10.1038/s41598-023-35500-1
    [22]
    C.Y. Liu, G.H. Sun, X.X. Liu, et al., Construction of filling body instability failure warning model under single-side unloading condition, Rock Mech. Rock Eng., 55(2022), No. 7, p. 4257. doi: 10.1007/s00603-022-02864-1
    [23]
    Q. Yin, J.Y. Wu, C. Zhu, M.C. He, Q.X. Meng, and H.W. Jing, Shear mechanical responses of sandstone exposed to high temperature under constant normal stiffness boundary conditions, Geomech. Geophys. Geo Energy Geo Resour., 7(2021), No. 2, art. No. 35. doi: 10.1007/s40948-021-00234-9
    [24]
    Q.C. Ran, Y.P. Liang, Q.L. Zou, et al., Experimental investigation on mechanical characteristics of red sandstone under graded cyclic loading and its inspirations for stability of overlying strata, Geomech. Geophys. Geo Energy Geo Resour., 9(2023), No. 1, art. No. 11. doi: 10.1007/s40948-023-00555-x
    [25]
    L.M. Wang, X.Q. Zhang, S.H. Yin, X.L. Zhang, P.Z. Liu, and I.M.S.K. Ilankoon, Three-dimensional characterisation of pore networks and fluid flow in segregated heaps in the presence of crushed ore and agglomerates, Hydrometallurgy, 219(2023), art. No. 106082. doi: 10.1016/j.hydromet.2023.106082
    [26]
    H.J. Lu, Y.R. Wang, D.Q. Gan, J. Wu, and X.J. Wu, Numerical investigation of the mechanical behavior of the backfill–rock composite structure under triaxial compression, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 802. doi: 10.1007/s12613-022-2554-9
    [27]
    W.Y. Cai, Z.C. Chang, D.S. Zhang, X.F. Wang, W.H. Cao, and Y.Z. Zhou, Roof filling control technology and application to mine roadway damage in small pit goaf, Int. J. Min. Sci. Technol., 29(2019), No. 3, p. 477. doi: 10.1016/j.ijmst.2018.10.001
    [28]
    S.H. Yin, Z.P. Yan, X. Chen, et al., Active roof-contact: The future development of cemented paste backfill, Constr. Build. Mater., 370(2023), art. No. 130657. doi: 10.1016/j.conbuildmat.2023.130657
    [29]
    M.L. Walske, H. McWilliam, J. Doherty, and A. Fourie, Influence of curing temperature and stress conditions on mechanical properties of cementing paste backfill, Can. Geotech. J., 53(2016), No. 1, p. 148. doi: 10.1139/cgj-2014-0502
    [30]
    M. Helinski, M. Fahey, and A. Fourie, Behavior of cemented paste backfill in two mine stopes: Measurements and modeling, J. Geotech. Geoenviron. Eng., 137(2011), No. 2, p. 171. doi: 10.1061/(ASCE)GT.1943-5606.0000418
    [31]
    M. Zhong, P. Yang, and Y.P. Hu, Study of instability mechanism and roof caving mode of cementing filling stope: The case study of a nonferrous metal mine in China, Adv. Civ. Eng., 2022(2022), art. No. 1658021.
    [32]
    K. Ding, F.S. Ma, J. Guo, H.J. Zhao, R. Lu, and F. Liu, Investigation of the mechanism of roof caving in the Jinchuan nickel mine, China, Rock Mech. Rock Eng., 51(2018), No. 4, p. 1215. doi: 10.1007/s00603-017-1374-0
    [33]
    H.J. Zhao, F.S. Ma, Y.M. Zhang, and J. Guo, Monitoring and mechanisms of ground deformation and ground fissures induced by cut-and-fill mining in the Jinchuan Mine 2, China, Environ. Earth Sci., 68(2013), No. 7, p. 1903. doi: 10.1007/s12665-012-1877-7
    [34]
    G. Li, Y. Wan, J. Guo, F.S. Ma, H.J. Zhao, and Z.Q. Li, A case study on ground subsidence and backfill deformation induced by multi-stage filling mining in a steeply inclined ore body, Remote Sens., 14(2022), No. 18, art. No. 4555. doi: 10.3390/rs14184555
    [35]
    T.B. Zhao, Z.Y. Fu, and G. Li, In situ investigation into fracture and subsidence of overburden strata for solid backfill mining, Arab. J. Geosci., 11(2018), No. 14, art. No. 398. doi: 10.1007/s12517-018-3769-y
    [36]
    D.P. Chen, S.H. Yin, R.F. Yan, Y. Zhou, Y.F. Zhang, and L.M. Wang, State analysis of the inclinometer tube for monitoring relative slippage between backfill and surrounding rock mass, Int. J. Min. Reclam. Environ., 37(2023), No. 10, p. 856. doi: 10.1080/17480930.2023.2245667
    [37]
    A.M. Fraser and H.L. Swinney, Independent coordinates for strange attractors from mutual information, Phys. Rev. A, 33(1986), No. 2, p. 1134. doi: 10.1103/PhysRevA.33.1134
    [38]
    M.B. Kennel, R. Brown, and H.D. Abarbanel, Determining embedding dimension for phase-space reconstruction using a geometrical construction, Phys. Rev. A, 45(1992), No. 6, p. 3403. doi: 10.1103/PhysRevA.45.3403
    [39]
    H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press, Cambridge, 2003.
    [40]
    S. Wallot and D. Mønster, Calculation of average mutual information (AMI) and false-nearest neighbors (FNN) for the estimation of embedding parameters of multidimensional time series in Matlab, Front. Psychol., 9(2018), art. No. 1679. doi: 10.3389/fpsyg.2018.01679
    [41]
    G.E.P. Box and D.A. Pierce, Distribution of residual autocorrelations in autoregressive-integrated moving average time series models, J. Am. Stat. Assoc., 65(1970), No. 332, p. 1509. doi: 10.1080/01621459.1970.10481180
    [42]
    D.A. Dickey and W.A. Fuller, Distribution of the estimators for autoregressive time series with a unit root, J. Am. Stat. Assoc., 74(1979), No. 366a, p. 427. doi: 10.1080/01621459.1979.10482531
    [43]
    H. Akaike, A new look at the statistical model identification, IEEE Trans. Autom. Contr., 19(1974), No. 6, p. 716. doi: 10.1109/TAC.1974.1100705
    [44]
    G. Schwarz, Estimating the dimension of a model, Ann. Statist., 6(1978), No. 2, p. 461.
    [45]
    S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput., 9(1997), No. 8, p. 1735. doi: 10.1162/neco.1997.9.8.1735
    [46]
    A. Vaswani, N. Shazeer, N. Parmar, et al., Attention is all you need, [in] NIPS'17 : Proceedings of the 31st International Conference on Neural Information Processing Systems, California, 2017, p. 6000.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(2420) PDF Downloads(36) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return