Chenjin Zhang, Guangyu Yang, Lei Xiao, Zhiyong Kan, Jing Guo, Qiang Li, and Wanqi Jie, Effects of the extrusion parameters on microstructure, texture and room temperature mechanical properties of extruded Mg–2.49Nd–1.82Gd–0.2Zn–0.2Zr alloy, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 136-146. https://doi.org/10.1007/s12613-024-2918-4
Cite this article as:
Chenjin Zhang, Guangyu Yang, Lei Xiao, Zhiyong Kan, Jing Guo, Qiang Li, and Wanqi Jie, Effects of the extrusion parameters on microstructure, texture and room temperature mechanical properties of extruded Mg–2.49Nd–1.82Gd–0.2Zn–0.2Zr alloy, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 136-146. https://doi.org/10.1007/s12613-024-2918-4
Research Article

Effects of the extrusion parameters on microstructure, texture and room temperature mechanical properties of extruded Mg–2.49Nd–1.82Gd–0.2Zn–0.2Zr alloy

+ Author Affiliations
  • Corresponding author:

    Guangyu Yang    E-mail: ygy@nwpu.edu.cn

  • Received: 10 January 2024Revised: 29 March 2024Accepted: 17 April 2024Available online: 19 April 2024
  • Microstructure, texture, and mechanical properties of the extruded Mg–2.49Nd–1.82Gd–0.2Zn–0.2Zr alloy were investigated at different extrusion temperatures (260 and 320°C), extrusion ratios (10:1, 15:1, and 30:1), and extrusion speeds (3 and 6 mm/s). The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy, and the second phase showed streamline distribution along the extrusion direction (ED). With extrusion temperature increased from 260 to 320°C, the microstructure, texture, and mechanical properties of alloys changed slightly. The dynamic recrystallization (DRX) degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1, and the strength gradually decreased but elongation (EL) increased. With the extrusion speed increased from 3 to 6 mm/s, the grain sizes and DRX degree increased significantly, and the samples presented the typical <$2\bar{1}\bar{1}1 $>–<$ 11\bar{2}3 $> rare-earth (RE) textures. The alloy extruded at 260°C with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength (TYS) of 213 MPa and EL of 30.6%. After quantitatively analyzing the contribution of strengthening mechanisms, it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions. These results provide some guidelines for enlarging the industrial application of extruded Mg–RE alloy.
  • loading
  • [1]
    Z.D. Wang, K.B. Nie, K.K. Deng, and J.G. Han, Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg−2Zn−0.8Sr−0.2Ca matrix composite reinforced by TiC nano-particles, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1981. doi: 10.1007/s12613-021-2353-8
    [2]
    H. Chen, Y.M. Yang, C.L. Hu, et al., Hot deformation behavior of novel high-strength Mg–0.6Mn–0.5Al–0.5Zn–0.4Ca alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2397. doi: 10.1007/s12613-023-2706-6
    [3]
    A.S. Hamdy, I. Doench, and H. Möhwald, The effect of vanadia surface treatment on the corrosion inhibition characteristics of an advanced magnesium Elektron 21 alloy in chloride media, Int. J. Electrochem. Sci., 7(2012), No. 9, p. 7751. doi: 10.1016/S1452-3981(23)17951-X
    [4]
    I. Pikos, A. Kiełbus, and J. Adamiec, The influence of casting defects on fatigue resistance of Elektron 21 magnesium alloy, Arch. Foundry Eng., 13(2013), No. 2, p. 103. doi: 10.2478/afe-2013-0046
    [5]
    A. Soltan, M.S. Dargusch, Z.M. Shi, et al., Effect of corrosion inhibiting compounds on the corrosion behaviour of pure magnesium and the magnesium alloys EV31A, WE43B and ZE41A, J. Magnesium Alloys, 9(2021), No. 2, p. 432. doi: 10.1016/j.jma.2020.07.006
    [6]
    S.J. Liu, G.Y. Yang, S.F. Luo, and W.Q. Jie, Microstructure evolution during heat treatment and mechanical properties of Mg–2.49Nd–1.82Gd–0.19Zn–0.4Zr cast alloy, Mater. Charact., 107(2015), p. 334. doi: 10.1016/j.matchar.2015.07.034
    [7]
    F.Y. Cao, J. Zhang, K.K. Li, and G.L. Song, Influence of heat treatment on corrosion behavior of hot rolled Mg5Gd alloys, Trans. Nonferrous Met. Soc. China, 31(2021), No. 4, p. 939. doi: 10.1016/S1003-6326(21)65551-6
    [8]
    J.S. Xie, Z. Zhang, S.J. Liu, et al., Designing new low alloyed Mg–RE alloys with high strength and ductility via high-speed extrusion, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 82. doi: 10.1007/s12613-022-2472-x
    [9]
    K. Wang, J.F. Wang, S. Huang, X.X. Dou, J.X. Wang, and C.L. Wang, Formation of an abnormal texture in Mg–Gd–Y–Zn–Mn alloy and its effect on mechanical properties by altering extrusion parameters, Mater. Sci. Eng. A, 831(2022), art. No. 142270. doi: 10.1016/j.msea.2021.142270
    [10]
    D.H. Lee, G.M. Lee, and S.H. Park, Difference in extrusion temperature dependences of microstructure and mechanical properties between extruded AZ61 and AZ91 alloys, J. Magnesium Alloys, 11(2023), No. 5, p. 1683. doi: 10.1016/j.jma.2022.05.015
    [11]
    W.J. Yin, F. Briffod, T. Shiraiwa, and M. Enoki, Mechanical properties and failure mechanisms of Mg–Zn–Y alloys with different extrusion ratio and LPSO volume fraction, J. Magnesium Alloys, 10(2022), No. 8, p. 2158. doi: 10.1016/j.jma.2022.02.004
    [12]
    L. Xiao, G.Y. Yang, J.M. Chen, S.F. Luo, J.H. Li, and W.Q. Jie, Microstructure, texture evolution and tensile properties of extruded Mg–4.58Zn–2.6Gd–0.16Zr alloy, Mater. Sci. Eng. A, 744(2019), p. 277. doi: 10.1016/j.msea.2018.11.142
    [13]
    S.S. Park, B.S. You, and D.J. Yoon, Effect of the extrusion conditions on the texture and mechanical properties of indirect-extruded Mg–3Al–1Zn alloy, J. Mater. Process. Technol., 209(2009), No. 18-19, p. 5940. doi: 10.1016/j.jmatprotec.2009.07.012
    [14]
    Y. Liu, J.B. Wen, H. Li, and J.G. He, Effects of extrusion parameters on the microstructure, corrosion resistance, and mechanical properties of biodegradable Mg–Zn–Gd–Y–Zr alloy, J. Alloys Compd., 891(2022), art. No. 161964. doi: 10.1016/j.jallcom.2021.161964
    [15]
    L. Xiao, G.Y. Yang, Y. Liu, S.F. Luo, and W.Q. Jie, Microstructure evolution, mechanical properties and diffusion behaviour of Mg–6Zn–2Gd–0.5Zr alloy during homogenization, J. Mater. Sci. Technol., 34(2018), No. 12, p. 2246. doi: 10.1016/j.jmst.2018.05.003
    [16]
    W.Y. Han, G.Y. Yang, L. Xiao, J.H. Li, and W.Q. Jie, Creep properties and creep microstructure evolution of Mg–2.49Nd–1.82Gd–0.19Zn–0.4Zr alloy, Mater. Sci. Eng. A, 684(2017), p. 90. doi: 10.1016/j.msea.2016.12.055
    [17]
    S.J. Liu, G.Y. Yang, S.F. Luo, and W.Q. Jie, Microstructure and mechanical properties of sand mold cast Mg–4.58Zn–2.6Gd–0.18Zr magnesium alloy after different heat treatments, J. Alloys Compd., 644(2015), p. 846. doi: 10.1016/j.jallcom.2015.05.062
    [18]
    Q.W. Chen, A.T. Tang, J.H. Ye, L.L. Hao, Y.R. Wang, and T.J. Zhang, Equilibrium and metastable phases in a designed precipitation hardenable Mg–3Gd–3Nd–0.6Zr alloy, Mater. Sci. Eng. A, 686(2017), p. 26. doi: 10.1016/j.msea.2017.01.012
    [19]
    S.M. Zhu, J.F. Nie, M.A. Gibson, and M.A. Easton, On the unexpected formation of rare earth hydrides in magnesium–rare earth casting alloys, Scripta Mater., 77(2014), p. 21. doi: 10.1016/j.scriptamat.2014.01.007
    [20]
    H.M. Zhu, G. Sha, J.W. Liu, et al., Heterogeneous nucleation of β-type precipitates on nanoscale Zr-rich particles in a Mg–6Zn–0.5Cu–0.6Zr alloy, Nanoscale Res. Lett., 7(2012), No. 1, art. No. 300. doi: 10.1186/1556-276X-7-300
    [21]
    J.F. Nie, K. Oh-Ishi, X. Gao, and K. Hono, Solute segregation and precipitation in a creep-resistant Mg–Gd–Zn alloy, Acta Mater., 56(2008), No. 20, p. 6061. doi: 10.1016/j.actamat.2008.08.025
    [22]
    F. Mouhib, R. Pei, B. Erol, F. Sheng, S. Korte-Kerzel, and T. Al-Samman, Synergistic effects of solutes on active deformation modes, grain boundary segregation and texture evolution in Mg–Gd–Zn alloys, Mater. Sci. Eng. A, 847(2022), art. No. 143348. doi: 10.1016/j.msea.2022.143348
    [23]
    P.C. De Oliveira, L.A. Montoro, M.T. Perez-Prado, A. Hohenwarter, R.B. Figueiredo, and A. Isaac, Development of segregations in a Mg–Mn–Nd alloy during HPT processing, Mater. Sci. Eng. A, 802(2021), art. No. 140423. doi: 10.1016/j.msea.2020.140423
    [24]
    J.D. Robson, S.J. Haigh, B. Davis, and D. Griffiths, Grain boundary segregation of rare-earth elements in magnesium alloys, Metall. Mater. Trans. A, 47(2016), No. 1, p. 522. doi: 10.1007/s11661-015-3199-3
    [25]
    A. Imandoust, C.D. Barrett, A.L. Oppedal, W.R. Whittington, Y. Paudel, and H. El Kadiri, Nucleation and preferential growth mechanism of recrystallization texture in high purity binary magnesium–rare earth alloys, Acta Mater., 138(2017), p. 27. doi: 10.1016/j.actamat.2017.07.038
    [26]
    H.L. Ding, X.B. Shi, Y.Q. Wang, G.P. Cheng, and S. Kamado, Texture weakening and ductility variation of Mg–2Zn alloy with CA or RE addition, Mater. Sci. Eng. A, 645(2015), p. 196. doi: 10.1016/j.msea.2015.08.025
    [27]
    S.E. Ion, F.J. Humphreys, and S.H. White, Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium, Acta Metall., 30(1982), No. 10, p. 1909. doi: 10.1016/0001-6160(82)90031-1
    [28]
    K. Li, Z.Y. Chen, T. Chen, J.B. Shao, R.K. Wang, and C.M. Liu, Hot deformation and dynamic recrystallization behaviors of Mg–Gd–Zn alloy with LPSO phases, J. Alloys Compd., 792(2019), p. 894. doi: 10.1016/j.jallcom.2019.04.036
    [29]
    D.H. Lee, S.H. Kim, H.J. Kim, B.G. Moon, Y.M. Kim, and S.H. Park, Effects of extrusion speed on the microstructure and mechanical properties of Mg–9Al–0.8Zn–0.9Ca–0.6Y–0.5MM alloy, Met. Mater. Int., 27(2021), No. 3, p. 530. doi: 10.1007/s12540-020-00867-7
    [30]
    D. Liu, Z.Y. Liu, and E.D. Wang, Effect of rolling reduction on microstructure, texture, mechanical properties and mechanical anisotropy of AZ31 magnesium alloys, Mater. Sci. Eng. A, 612(2014), p. 208. doi: 10.1016/j.msea.2014.06.034
    [31]
    J.F. Nie, Precipitation and hardening in magnesium alloys, Metall. Mater. Trans. A, 43(2012), No. 11, p. 3891. doi: 10.1007/s11661-012-1217-2
    [32]
    J.D. Yang, W.X. Wang, M. Zhang, et al., Effects of Gd/Nd ratio on the microstructures and tensile creep behavior of Mg–8Al–Gd–Nd alloys crept at 423K, J. Mater. Res. Technol., 14(2021), p. 2522. doi: 10.1016/j.jmrt.2021.07.093
    [33]
    H.C. Pan, G.W. Qin, Y.M. Huang, et al., Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength, Acta Mater., 149(2018), p. 350. doi: 10.1016/j.actamat.2018.03.002
    [34]
    B. Lei, B. Jiang, H.B. Yang, et al., Effect of Nd addition on the microstructure and mechanical properties of extruded Mg–Gd–Zr alloy, Mater. Sci. Eng. A, 816(2021), art. No. 141320. doi: 10.1016/j.msea.2021.141320
    [35]
    L. Gao, R.S. Chen, and E.H. Han, Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys, J. Alloys Compd., 481(2009), No. 1-2, p. 379. doi: 10.1016/j.jallcom.2009.02.131
    [36]
    G.Q. Li, J.H. Zhang, R.Z. Wu, et al., Improving age hardening response and mechanical properties of a new Mg–RE alloy via simple pre-cold rolling, J. Alloys Compd., 777(2019), p. 1375. doi: 10.1016/j.jallcom.2018.11.082
    [37]
    K.K. Ma, H.M. Wen, T. Hu, et al., Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy, Acta Mater., 62(2014), p. 141. doi: 10.1016/j.actamat.2013.09.042
    [38]
    Y.J. Nie, J.W. Dai, and X.B. Zhang, Effect of Ag addition on microstructure, mechanical and corrosion properties of Mg–Nd–Zn–Zr alloy for orthopedic application, Acta Metall. Sin. Engl. Lett., 36(2023), No. 2, p. 295. doi: 10.1007/s40195-022-01464-w
    [39]
    L.W. Zheng, Y.P. Zhuang, J.J. Li, et al., Mechanical properties of Mg–Gd–Zr alloy by Nd addition combined with hot extrusion, Trans. Nonferrous Met. Soc. China, 32(2022), No. 6, p. 1866. doi: 10.1016/S1003-6326(22)65914-4
    [40]
    F. Naghdi, R. Mahmudi, J.Y. Kang, and H.S. Kim, Contributions of different strengthening mechanisms to the shear strength of an extruded Mg–4Zn–0.5Ca alloy, Philos. Mag., 95(2015), No. 31, p. 3452. doi: 10.1080/14786435.2015.1083134
    [41]
    Q. Yang, S.H. Lv, K. Guan, Z.F. Xie, and X. Qiu, Extra-conventional strengthening mechanisms in non-recrystallized grains of an extruded Mg–Gd–Zr alloy, J. Magnesium Alloys, (2023
    [42]
    Z.M. Li, P.H. Fu, L.M. Peng, Y.X. Wang, and H.Y. Jiang, Strengthening mechanisms in solution treated Mg–yNd– zZn–xZr alloy, J. Mater. Sci., 48(2013), No. 18, p. 6367. doi: 10.1007/s10853-013-7436-0
    [43]
    Z. Yang, J.P. Li, Y.C. Guo, et al., Precipitation process and effect on mechanical properties of Mg–9Gd–3Y–0.6Zn–0.5Zr alloy, Mater. Sci. Eng. A, 454(2007), p. 274.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(276) PDF Downloads(27) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return