Shuo Chen, Shengpeng Su, Yanfang Huang, Bingbing Liu, Hu Sun, Shuzhen Yang,  and Guihong Han, Deep eutectic solvents for separation and purification applications in critical metal metallurgy: Recent advances and perspectives, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2923-7
Cite this article as:
Shuo Chen, Shengpeng Su, Yanfang Huang, Bingbing Liu, Hu Sun, Shuzhen Yang,  and Guihong Han, Deep eutectic solvents for separation and purification applications in critical metal metallurgy: Recent advances and perspectives, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2923-7
Review

Deep eutectic solvents for separation and purification applications in critical metal metallurgy: Recent advances and perspectives

+ Author Affiliations
  • Corresponding author:

    Guihong Han    E-mail: hanguihong@zzu.edu.cn

  • Received: 1 November 2023Revised: 16 April 2024Accepted: 18 April 2024Available online: 19 April 2024
  • Solvent extraction, a separation and purification technology, is crucial in critical metal metallurgy. Organic solvents commonly used in solvent extraction exhibit disadvantages, such as high volatility, high toxicity, and flammability, causing a spectrum of hazards to human health and environmental safety. Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents. In the past two decades, several neoteric solvents have been proposed, including ionic liquids (ILs) and deep eutectic solvents (DESs). DESs have gradually become the focus of green solvents owing to several advantages, namely, low toxicity, degradability, and low cost. In this critical review, their classification, formation mechanisms, preparation methods, characterization technologies, and special physicochemical properties based on the most recent advancements in research have been systematically described. Subsequently, the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized. Finally, future opportunities and challenges of DESs were explored in the current research area. In conclusion, this review provides valuable insights for improving our overall understanding of DESs, and it holds important potential for expanding separation and purification applications in critical metal metallurgy.
  • loading
  • [1]
    J.L. Wang, L. Liu, W. Xu, et al., Separation of Pd and Pt from highly acidic leach liquor of spent automobile catalysts with monothio-Cyanex 272 and trioctylamine, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 877. doi: 10.1007/s12613-022-2492-6
    [2]
    Z.M. Xue, L. Qin, J.Y. Jiang, T.C. Mu, and G.H. Gao, Thermal, electrochemical and radiolytic stabilities of ionic liquids, Phys. Chem. Chem. Phys., 20(2018), No. 13, p. 8382. doi: 10.1039/C7CP07483B
    [3]
    F. Cao, W. Wang, D.Z. Wei, and W.G. Liu, Separation of tungsten and molybdenum with solvent extraction using functionalized ionic liquid tricaprylmethylammonium bis(2,4,4-trimethylpentyl)phosphinate, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1769. doi: 10.1007/s12613-020-2172-3
    [4]
    A.A. Fannin Jr, D.A. Floreani, L.A. King, et al., Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities, J. Phys. Chem., 88(1984), No. 12, p. 2609. doi: 10.1021/j150656a037
    [5]
    S. Zein El Abedin, E.M. Moustafa, R. Hempelmann, H. Natter, and F. Endres, Electrodeposition of nano- and microcrystalline aluminium in three different air and water stable ionic liquids, Chemphyschem, 7(2006), No. 7, p. 1535. doi: 10.1002/cphc.200600095
    [6]
    K.N. Marsh, J.A. Boxall, and R. Lichtenthaler, Room temperature ionic liquids and their mixtures—A review, Fluid Phase Equilib., 219(2004), No. 1, p. 93. doi: 10.1016/j.fluid.2004.02.003
    [7]
    T. El Achkar, H. Greige-Gerges, and S. Fourmentin, Basics and properties of deep eutectic solvents: A review, Environ. Chem. Lett., 19(2021), No. 4, p. 3397. doi: 10.1007/s10311-021-01225-8
    [8]
    M.A.R. Martins, S.P. Pinho, and J.A.P. Coutinho, Insights into the nature of eutectic and deep eutectic mixtures, J. Solution Chem., 48(2019), No. 7, p. 962. doi: 10.1007/s10953-018-0793-1
    [9]
    B.B. Hansen, S. Spittle, B. Chen, et al., Deep eutectic solvents: A review of fundamentals and applications, Chem. Rev., 121(2021), No. 3, p. 1232. doi: 10.1021/acs.chemrev.0c00385
    [10]
    A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, and R.K. Rasheed, Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids, J. Am. Chem. Soc., 126(2004), No. 29, p. 9142. doi: 10.1021/ja048266j
    [11]
    A.P. Abbott, G. Capper, D.L. Davies, H.L. Munro, R.K. Rasheed, and V. Tambyrajah, Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains, Chem. Commun., (2001), No. 19, p. 2010.
    [12]
    A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, and V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures, Chem. Commun., (2003), No. 1, p. 70.
    [13]
    K. Rong, H. Zhang, H. Zhang, Y.Y. Hu, Y.X. Fang, and S.J. Dong, Deep eutectic solvent with Prussian blue and tungsten oxide for green and low-cost electrochromic devices, ACS Appl. Electron. Mater., 1(2019), No. 6, p. 1038. doi: 10.1021/acsaelm.9b00162
    [14]
    M.B. Singh, V.S. Kumar, M. Chaudhary, and P. Singh, A mini review on synthesis, properties and applications of deep eutectic solvents, J. Indian Chem. Soc., 98(2021), No. 11, art. No. 100210. doi: 10.1016/j.jics.2021.100210
    [15]
    L.I.N. Tomé, V. Baião, W. da Silva, and C.M.A. Brett, Deep eutectic solvents for the production and application of new materials, Appl. Mater. Today, 10(2018), p. 30. doi: 10.1016/j.apmt.2017.11.005
    [16]
    P. Kaur, N. Rajani, P. Kumawat, N. Singh, and J.P. Kushwaha, Performance and mechanism of dye extraction from aqueous solution using synthesized deep eutectic solvents, Colloids Surf. A, 539(2018), p. 85. doi: 10.1016/j.colsurfa.2017.12.013
    [17]
    S. Dutta and K. Nath, Prospect of ionic liquids and deep eutectic solvents as new generation draw solution in forward osmosis process, J. Water Process Eng., 21(2018), p. 163. doi: 10.1016/j.jwpe.2017.12.012
    [18]
    M. Moghimi and A. Roosta, Physical properties of aqueous mixtures of (choline chloride + glucose) deep eutectic solvents, J. Chem. Thermodyn., 129(2019), p. 159. doi: 10.1016/j.jct.2018.09.029
    [19]
    I. Adeyemi, M.R.M. Abu-Zahra, and I.M. AlNashef, Physicochemical properties of alkanolamine-choline chloride deep eutectic solvents: Measurements, group contribution and artificial intelligence prediction techniques, J. Mol. Liq., 256(2018), p. 581. doi: 10.1016/j.molliq.2018.02.085
    [20]
    S.M. Yousefi, F. Shemirani, and S. Ali Ghorbanian, Deep eutectic solvent magnetic bucky gels in developing dispersive solid phase extraction: Application for ultra trace analysis of organochlorine pesticides by GC-micro ECD using a large-volume injection technique, Talanta, 168(2017), p. 73. doi: 10.1016/j.talanta.2017.03.020
    [21]
    A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, and A.R.C. Duarte, Natural deep eutectic solvents–solvents for the 21st century, ACS Sustainable Chem. Eng., 2(2014), No. 5, p. 1063. doi: 10.1021/sc500096j
    [22]
    W.C. Su, D.S.H. Wong, and M.H. Li, Effect of water on solubility of carbon dioxide in (aminomethanamide + 2-hydroxy-N ,N ,N-trimethylethanaminium chloride), J. Chem. Eng. Data, 54(2009), No. 6, p. 1951. doi: 10.1021/je900078k
    [23]
    D. Lindberg, M. de la Fuente Revenga, and M. Widersten, Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis, J. Biotechnol., 147(2010), No. 3-4, p. 169. doi: 10.1016/j.jbiotec.2010.04.011
    [24]
    D.A. Walsh, K.R.J. Lovelock, and P. Licence, Ultramicroelectrode voltammetry and scanning electrochemical microscopy in room-temperature ionic liquid electrolytes, Chem. Soc. Rev., 39(2010), No. 11, p. 4185. doi: 10.1039/b822846a
    [25]
    V.M. Paradiso, A. Clemente, C. Summo, A. Pasqualone, and F. Caponio, Towards green analysis of virgin olive oil phenolic compounds: Extraction by a natural deep eutectic solvent and direct spectrophotometric detection, Food Chem., 212(2016), p. 43. doi: 10.1016/j.foodchem.2016.05.082
    [26]
    P. Liu, J.W. Hao, L.P. Mo, and Z.H. Zhang, Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions, RSC Adv., 5(2015), No. 60, p. 48675. doi: 10.1039/C5RA05746A
    [27]
    X. Li and K.H. Row, Development of deep eutectic solvents applied in extraction and separation, J. Sep. Sci., 39(2016), No. 18, p. 3505. doi: 10.1002/jssc.201600633
    [28]
    S.J. Tang, J.L. Feng, R.C. Su, M. Zhang, and M. Guo, New bifunctional deep-eutectic solvent for in situ selective extraction of valuable metals from spent lithium batteries, ACS Sustainable Chem. Eng., 10(2022), No. 26, p. 8423. doi: 10.1021/acssuschemeng.2c01408
    [29]
    A.J. Whitworth, J. Vaughan, G. Southam, et al., Review on metal extraction technologies suitable for critical metal recovery from mining and processing wastes, Miner. Eng., 182(2022), art. No. 107537. doi: 10.1016/j.mineng.2022.107537
    [30]
    A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, and P. Shikotra, Selective extraction of metals from mixed oxide matrixes using choline-based ionic liquids, Inorg. Chem., 44(2005), No. 19, p. 6497. doi: 10.1021/ic0505450
    [31]
    A.P. Abbott, J. Collins, I. Dalrymple, et al., Processing of electric arc furnace dust using deep eutectic solvents, Aust. J. Chem., 62(2009), No. 4, art. No. 341. doi: 10.1071/CH08476
    [32]
    E.L. Smith, A.P. Abbott, and K.S. Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev., 114(2014), No. 21, p. 11060. doi: 10.1021/cr300162p
    [33]
    C.K. Zhang, L.Y. Zhang, and G.H. Yu, Eutectic electrolytes as a promising platform for next-generation electrochemical energy storage, Acc. Chem. Res., 53(2020), No. 8, p. 1648. doi: 10.1021/acs.accounts.0c00360
    [34]
    A.P. Abbott, G. Capper, D.L. Davies, and R.K. Rasheed, Ionic liquid analogues formed from hydrated metal salts, Chemistry, 10(2004), No. 15, p. 3769. doi: 10.1002/chem.200400127
    [35]
    L.N. Li, Y.M. Liu, Z.T. Wang, L. Yang, and H.W. Liu, Development and applications of deep eutectic solvent derived functional materials in chromatographic separation, J. Sep. Sci., 44(2021), No. 6, p. 1098. doi: 10.1002/jssc.202000523
    [36]
    C. Florindo, F.S. Oliveira, L.P.N. Rebelo, A.M. Fernandes, and I.M. Marrucho, Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids, ACS Sustainable Chem. Eng., 2(2014), No. 10, p. 2416. doi: 10.1021/sc500439w
    [37]
    M.C. Gutiérrez, M.L. Ferrer, C.R. Mateo, and F. del Monte, Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures, Langmuir, 25(2009), No. 10, p. 5509. doi: 10.1021/la900552b
    [38]
    T. Hanada and M. Goto, Synergistic deep eutectic solvents for lithium extraction, ACS Sustainable Chem. Eng., 9(2021), No. 5, p. 2152. doi: 10.1021/acssuschemeng.0c07606
    [39]
    K.Y. Zhu, Q.F. Wei, H.Q. Li, and X.L. Ren, Recovery of titanium from ilmenite HCl leachate using a hydrophobic deep eutectic solvent, ACS Sustainable Chem. Eng., 10(2022), No. 6, p. 2125. doi: 10.1021/acssuschemeng.1c07204
    [40]
    J.Y. Seyf and F. Zarei, Density, viscosity, and refractive index of a choline chloride + d-(–)-fructose deep eutectic solvent + water mixture at different temperatures: An experimental study and thermodynamic modeling, J. Chem. Eng. Data, 67(2022), No. 10, p. 3007. doi: 10.1021/acs.jced.2c00440
    [41]
    Q. Zhang, K. De Oliveira Vigier, S. Royer, and F. Jérôme, Deep eutectic solvents: Syntheses, properties and applications, Chem. Soc. Rev., 41(2012), No. 21, p. 7108. doi: 10.1039/c2cs35178a
    [42]
    H. Monhemi, M.R. Housaindokht, A.A. Moosavi-Movahedi, and M.R. Bozorgmehr, How a protein can remain stable in a solvent with high content of urea: Insights from molecular dynamics simulation of Candida antarctica lipase B in urea: Choline chloride deep eutectic solvent, Phys. Chem. Chem. Phys., 16(2014), No. 28, p. 14882. doi: 10.1039/c4cp00503a
    [43]
    W.J. Guo, Y.C. Hou, S.H. Ren, S.D. Tian, and W.Z. Wu, Formation of deep eutectic solvents by phenols and choline chloride and their physical properties, J. Chem. Eng. Data, 58(2013), No. 4, p. 866. doi: 10.1021/je300997v
    [44]
    D. Pavoković, K. Košpić, M. Panić, I. Radojčić Redovniković, and M. Cvjetko Bubalo, Natural deep eutectic solvents are viable solvents for plant cell culture-assisted stereoselective biocatalysis, Process Biochem., 93(2020), p. 69. doi: 10.1016/j.procbio.2020.03.020
    [45]
    E. Durand, J. Lecomte, and P. Villeneuve, Deep eutectic solvents: Synthesis, application, and focus on lipase-catalyzed reactions, Eur. J. Lipid Sci. Technol., 115(2013), No. 4, p. 379. doi: 10.1002/ejlt.201200416
    [46]
    M. Avalos, R. Babiano, P. Cintas, J.L. Jiménez, and J.C. Palacios, Greener media in chemical synthesis and processing, Angew. Chem. Int. Ed., 45(2006), No. 24, p. 3904. doi: 10.1002/anie.200504285
    [47]
    Z.H. Lin, Y.H. Zhang, B.N. Jiao, K. Han, and Y. Qin, Application of deep eutectic solvents–dispersive liquid–liquid microextraction in the detection of food and environmental pollutants, Food Ferment. Ind., 47(2021), No.7, p.260.
    [48]
    D. Lapeña, L. Lomba, M. Artal, C. Lafuente, and B. Giner, The NADES glyceline as a potential Green Solvent: A comprehensive study of its thermophysical properties and effect of water inclusion, J. Chem. Thermodyn., 128(2019), p. 164. doi: 10.1016/j.jct.2018.07.031
    [49]
    Y.T. Dai, G.J. Witkamp, R. Verpoorte, and Y.H. Choi, Tailoring properties of natural deep eutectic solvents with water to facilitate their applications, Food Chem., 187(2015), p. 14. doi: 10.1016/j.foodchem.2015.03.123
    [50]
    C.M. Lin, R.B. Leron, A.R. Caparanga, and M.H. Li, Henry’s constant of carbon dioxide-aqueous deep eutectic solvent (choline chloride/ethylene glycol, choline chloride/glycerol, choline chloride/malonic acid) systems, J. Chem. Thermodyn., 68(2014), p. 216. doi: 10.1016/j.jct.2013.08.029
    [51]
    Y.N. Cui, C.P. Li, J.M. Yin, S.M. Li, Y.P. Jia, and M. Bao, Design, synthesis and properties of acidic deep eutectic solvents based on choline chloride, J. Mol. Liq., 236(2017), p. 338. doi: 10.1016/j.molliq.2017.04.052
    [52]
    H.G. Morrison, C.C. Sun, and S. Neervannan, Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles, Int. J. Pharm., 378(2009), No. 1-2, p. 136. doi: 10.1016/j.ijpharm.2009.05.039
    [53]
    A.P. Abbott, G. Capper, D.L. Davies, K.J. McKenzie, and S.U. Obi, Solubility of metal oxides in deep eutectic solvents based on choline chloride, J. Chem. Eng. Data, 51(2006), No. 4, p. 1280. doi: 10.1021/je060038c
    [54]
    A.P. Abbott, G. Frisch, J. Hartley, and K.S. Ryder, Processing of metals and metal oxides using ionic liquids, Green Chem., 13(2011), No. 3, p. 471. doi: 10.1039/c0gc00716a
    [55]
    P. Nockemann, B. Thijs, K. Lunstroot, et al., Speciation of rare-earth metal complexes in ionic liquids: A multiple-technique approach, Chemistry, 15(2009), No. 6, p. 1449. doi: 10.1002/chem.200801418
    [56]
    Y. Liu, J.B. Friesen, J.B. McAlpine, D.C. Lankin, S.N. Chen, and G.F. Pauli, Natural deep eutectic solvents: Properties, applications, and perspectives, J. Nat. Prod., 81(2018), No. 3, p. 679. doi: 10.1021/acs.jnatprod.7b00945
    [57]
    Y. Chen, W.J. Chen, L. Fu, et al., Surface tension of 50 deep eutectic solvents: Effect of hydrogen-bonding donors, hydrogen-bonding acceptors, other solvents, and temperature, Ind. Eng. Chem. Res., 58(2019), No. 28, p. 12741. doi: 10.1021/acs.iecr.9b00867
    [58]
    B. Jibril, F. Mjalli, J. Naser, and Z. Gano, New tetrapropylammonium bromide-based deep eutectic solvents: Synthesis and characterizations, J. Mol. Liq., 199(2014), p. 462. doi: 10.1016/j.molliq.2014.08.004
    [59]
    J.A. Bogart, C.A. Lippincott, P.J. Carroll, and E.J. Schelter, An operationally simple method for separating the rare-earth elements neodymium and dysprosium, Angew. Chem. Int. Ed., 54(2015), No. 28, p. 8222. doi: 10.1002/anie.201501659
    [60]
    A. Rout and K. Binnemans, Separation of rare earths from transition metals by liquid-liquid extraction from a molten salt hydrate to an ionic liquid phase, Dalton Trans., 43(2014), No. 8, p. 3186. doi: 10.1039/C3DT52541D
    [61]
    L.S. Wang, X.W. Huang, Y. Yu, et al., Towards cleaner production of rare earth elements from bastnaesite in China, J. Cleaner Prod., 165(2017), p. 231. doi: 10.1016/j.jclepro.2017.07.107
    [62]
    D.J. Packey and D. Kingsnorth, The impact of unregulated ionic clay rare earth mining in China, Resour. Policy, 48(2016), p. 112. doi: 10.1016/j.resourpol.2016.03.003
    [63]
    A. Entezari-Zarandi and F. Larachi, Selective dissolution of rare-earth element carbonates in deep eutectic solvents, J. Rare Earths, 37(2019), No. 5, p. 528. doi: 10.1016/j.jre.2018.07.015
    [64]
    G. Arrachart, J. Couturier, S. Dourdain, C. Levard, and S. Pellet-Rostaing, Recovery of rare earth elements (REEs) using ionic solvents, Processes, 9(2021), No. 7, art. No. 1202. doi: 10.3390/pr9071202
    [65]
    C.M.G. Pires, A.B. Ribeiro, E.P. Mateus, H.A. Ponte, and M.J.J.S. Ponte, Extraction of rare earth elements via electric field assisted mining applying deep eutectic solvents, Sustainable Chem. Pharm., 26(2022), art. No. 100638. doi: 10.1016/j.scp.2022.100638
    [66]
    S.N. Ni, Y. Gao, G.S. Yu, S.J. Zhang, Z.Y. Zeng, and X.Q. Sun, Tailored ternary hydrophobic deep eutectic solvents for synergistic separation of yttrium from heavy rare earth elements, Green Chem., 24(2022), No. 18, p. 7148. doi: 10.1039/D2GC02566C
    [67]
    W.J. Chen, J.Y. Jiang, X. Lan, X.H. Zhao, H.Y. Mou, and T.C. Mu, A strategy for the dissolution and separation of rare earth oxides by novel Brønsted acidic deep eutectic solvents, Green Chem., 21(2019), No. 17, p. 4748. doi: 10.1039/C9GC00944B
    [68]
    Q.B. Yan, C.Y. Liu, X.W. Zhang, L.C. Lei, and C.L. Xiao, Selective dissolution and separation of rare earths using guanidine-based deep eutectic solvents, ACS Sustainable Chem. Eng., 9(2021), No. 25, p. 8507. doi: 10.1021/acssuschemeng.1c01616
    [69]
    T.W. Chen, T.S. Priya, S.M. Chen, T. Kokulnathan, F. Ahmed, and T. Alshahrani, Synthesis of praseodymium vanadate in deep eutectic solvent medium for electrochemical detection of furaltadone, Process Saf. Environ. Prot., 174(2023), p. 368. doi: 10.1016/j.psep.2023.04.019
    [70]
    A. Söldner and B. König, Optical analysis and separation of trivalent lanthanides in deep eutectic solvents, J. Rare Earths, 38(2020), No. 7, p. 784. doi: 10.1016/j.jre.2019.11.001
    [71]
    J. Xiao, B. Li, R.B. Qiang, H.D. Qiu, and J. Chen, Highly selective adsorption of rare earth elements by honeycomb-shaped covalent organic frameworks synthesized in deep eutectic solvents, Environ. Res., 214(2022), art. No. 113977. doi: 10.1016/j.envres.2022.113977
    [72]
    I.M. Pateli, A.P. Abbott, K. Binnemans, and N. Rodriguez Rodriguez, Recovery of yttrium and europium from spent fluorescent lamps using pure levulinic acid and the deep eutectic solvent levulinic acid-choline chloride, RSC Adv., 10(2020), No. 48, p. 28879. doi: 10.1039/D0RA05508E
    [73]
    R. Karan, T. Sreenivas, M.A. Kumar, and D.K. Singh, Recovery of rare earth elements from coal flyash using deep eutectic solvents as leachants and precipitating as oxalate or fluoride, Hydrometallurgy, 214(2022), art. No. 105952. doi: 10.1016/j.hydromet.2022.105952
    [74]
    S. Ushizaki, S. Kanemaru, K. Sugamoto, and Y. Baba, Selective extraction equilibria of Sc(III), Y(III), Fe(III) and Al(III) from acidic media with toluene mixture of deep eutectic solvent (DES) composed of TOPO and isostearic acid, Anal. Sci., 39(2023), No. 4, p. 473. doi: 10.1007/s44211-022-00234-z
    [75]
    M. Matsumoto, T. Ito, S. Kanemaru, Y. Baba, and K. Sugamoto, Selective extraction of Sc(III) over Y(III) and Fe(III) with a deep eutectic solvent composed of N-lauroylsarcosine and tri-n-octylphosphine oxide, Solvent Extr. Ion Exch., 39(2021), No. 5-6, p. 573. doi: 10.1080/07366299.2021.1879458
    [76]
    S. Prusty, S. Pradhan, and S. Mishra, Extraction and separation studies of Nd/Fe and Sm/Co by deep eutectic solvent containing Aliquat 336 and glycerol, J. Chem. Technol. Biotechnol., 98(2023), No. 7, p. 1631. doi: 10.1002/jctb.7381
    [77]
    S. Riaño, M. Petranikova, B. Onghena, et al., Separation of rare earths and other valuable metals from deep-eutectic solvents: A new alternative for the recycling of used NdFeB magnets, RSC Adv., 7(2017), No. 51, p. 32100. doi: 10.1039/C7RA06540J
    [78]
    C.Y. Liu, Q.B. Yan, X.W. Zhang, L.C. Lei, and C.L. Xiao, Efficient recovery of end-of-life NdFeB permanent magnets by selective leaching with deep eutectic solvents, Environ. Sci. Technol., 54(2020), No. 16, p. 10370. doi: 10.1021/acs.est.0c03278
    [79]
    G.S. Yu, S.N. Ni, Y. Gao, D.T. Mo, Z.Y. Zeng, and X.Q. Sun, Recovery of rare earth metal oxides from NdFeB magnet leachate by hydrophobic deep eutectic solvent extraction, oxalate stripping and calcination, Hydrometallurgy, 223(2024), art. No. 106209. doi: 10.1016/j.hydromet.2023.106209
    [80]
    Q. Yang, Y.D. Li, B. Li, P.P. Duan, Z.Q. Ren, and Z.Y. Zhou, Selective leaching and recovery of neodymium from NdFeB carbonyl residues, Sep. Purif. Technol., 329(2024), art. No. 125137. doi: 10.1016/j.seppur.2023.125137
    [81]
    A.J.B. Dutra, P.R.P. Paiva, and L.M. Tavares, Alkaline leaching of zinc from electric arc furnace steel dust, Miner. Eng., 19(2006), No. 5, p. 478. doi: 10.1016/j.mineng.2005.08.013
    [82]
    S.B. Ma, Z.H. Zhang, S.X. Xu, X.T. Li, and L. Feng, Recovery of zinc from electric arc furnace dust by vacuum carbothermal reduction, Metall. Res. Technol., 118(2021), No. 4, art. No. 415. doi: 10.1051/metal/2021058
    [83]
    T. KiranKumar and G.G. Roy, A review on processing of electric arc furnace dust (EAFD) by pyro-metallurgical processes, Trans. Indian Inst. Met., 75(2022), No. 5, p. 1101. doi: 10.1007/s12666-021-02465-6
    [84]
    K. Binnemans, P.T. Jones, Á. Manjón Fernández, and V. Masaguer Torres, Hydrometallurgical processes for the recovery of metals from steel industry by-products: A critical review, J. Sustainable Metall., 6(2020), No. 4, p. 505. doi: 10.1007/s40831-020-00306-2
    [85]
    Y. Xue, X.M. Liu, C.B. Xu, and Y.H. Han, Hydrometallurgical detoxification and recycling of electric arc furnace dust, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2076. doi: 10.1007/s12613-023-2637-2
    [86]
    A.P. Abbott, G. Capper, D.L. Davies, and P. Shikotra, Processing metal oxides using ionic liquids, Miner. Process. Extr. Metall., 115(2006), No. 1, p. 15. doi: 10.1179/174328506X91293
    [87]
    S.Y. Xu, F. Li, C.Y. Chen, et al., Innovative deep eutectic solvent approaches in zinc electroplating for morphology enhancement, superior strength, and corrosion protection, J. Mol. Liq., 397(2024), art. No. 124094. doi: 10.1016/j.molliq.2024.124094
    [88]
    A. Bakkar, Recycling of electric arc furnace dust through dissolution in deep eutectic ionic liquids and electrowinning, J. Hazard. Mater., 280(2014), p. 191. doi: 10.1016/j.jhazmat.2014.07.066
    [89]
    A. Bakkar and V. Neubert, Recycling of cupola furnace dust: Extraction and electrodeposition of zinc in deep eutectic solvents, J. Alloys Compd., 771(2019), p. 424. doi: 10.1016/j.jallcom.2018.08.246
    [90]
    X.L. Zhu, C.Y. Xu, J. Tang, et al., Selective recovery of zinc from zinc oxide dust using choline chloride based deep eutectic solvents, Trans. Nonferrous Met. Soc. China, 29(2019), No. 10, p. 2222. doi: 10.1016/S1003-6326(19)65128-9
    [91]
    P. Zürner and G. Frisch, Leaching and selective extraction of indium and tin from zinc flue dust using an oxalic acid-based deep eutectic solvent, ACS Sustainable Chem. Eng., 7(2019), No. 5, p. 5300. doi: 10.1021/acssuschemeng.8b06331
    [92]
    E.E. Tereshatov, M.Y. Boltoeva, and C.M. Folden, First evidence of metal transfer into hydrophobic deep eutectic and low-transition-temperature mixtures: Indium extraction from hydrochloric and oxalic acids, Green Chem., 18(2016), No. 17, p. 4616. doi: 10.1039/C5GC03080C
    [93]
    Y.J. Zhang, X.H. Li, L.P. Pan, X.Y. Liang, and X.P. Li, Studies on the kinetics of zinc and indium extraction from indium-bearing zinc ferrite, Hydrometallurgy, 100(2010), No. 3-4, p. 172. doi: 10.1016/j.hydromet.2009.10.015
    [94]
    S.J. Tang, M. Zhang, and M. Guo, A novel deep-eutectic solvent with strong coordination ability and low viscosity for efficient extraction of valuable metals from spent lithium-ion batteries, ACS Sustainable Chem. Eng., 10(2022), No. 2, p. 975. doi: 10.1021/acssuschemeng.1c06902
    [95]
    Y.N. Yang, Y.J. Yang, C.L. He, et al., Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 897. doi: 10.1007/s12613-022-2571-8
    [96]
    B. Tang, H. Zhang, and K.H. Row, Application of deep eutectic solvents in the extraction and separation of target compounds from various samples, J. Sep. Sci., 38(2015), No. 6, p. 1053. doi: 10.1002/jssc.201401347
    [97]
    S.B. Wang, Z.T. Zhang, Z.G. Lu, and Z.H. Xu, A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries, Green Chem., 22(2020), No. 14, p. 4473. doi: 10.1039/D0GC00701C
    [98]
    N. Peeters, K. Binnemans, and S. Riaño, Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents, Green Chem., 22(2020), No. 13, p. 4210. doi: 10.1039/D0GC00940G
    [99]
    M.K. Tran, M.T F. Rodrigues, K. Kato, G. Babu, and P.M. Ajayan, Deep eutectic solvents for cathode recycling of Li-ion batteries, Nat. Energy, 4(2019), p. 339. doi: 10.1038/s41560-019-0368-4
    [100]
    J. Potticary, C. Hall, V. Hamilton, J.F. McCabe, and S.R. Hall, Crystallization from volatile deep eutectic solvents, Cryst. Growth Des., 20(2020), No. 5, p. 2877. doi: 10.1021/acs.cgd.0c00399
    [101]
    M.J. Roldán-Ruiz, M.L. Ferrer, M.C. Gutiérrez, and F. del Monte, Highly efficient p-toluenesulfonic acid-based deep-eutectic solvents for cathode recycling of Li-ion batteries, ACS Sustainable Chem. Eng., 8(2020), No. 14, p. 5437. doi: 10.1021/acssuschemeng.0c00892
    [102]
    J.Q. Wang, W.Q. Jing, H.Y. Tian, et al., Investigation of deep eutectic solvent-based microwave-assisted extraction and efficient recovery of natural products, ACS Sustainable Chem. Eng., 8(2020), No. 32, p. 12080. doi: 10.1021/acssuschemeng.0c03393
    [103]
    H.H. Li, N.Y. Chen, W.F. Liu, et al., A reusable deep eutectic solvent for the regeneration of Li and Co metals from spent lithium-ion batteries, J. Alloys Compd., 966(2023), art. No. 171517. doi: 10.1016/j.jallcom.2023.171517
    [104]
    T.B. Li, Y.G. Xiong, X.H. Yan, et al., Closed-loop cobalt recycling from spent lithium-ion batteries based on a deep eutectic solvent (DES) with easy solvent recovery, J. Energy Chem., 72(2022), p. 532. doi: 10.1016/j.jechem.2022.05.008
    [105]
    S.Q. Nie, Y. Xin, Q.Y. Wang, et al., Three-dimensional structural Cu6Sn5/carbon nanotubes alloy thin-film electrodes fabricated by in situ electrodeposition from the leaching solution of waste-printed circuit boards, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1171. doi: 10.1007/s12613-022-2591-4
    [106]
    P. Sebastian, M.I. Giannotti, E. Gómez, and J.M. Feliu, Surface sensitive nickel electrodeposition in deep eutectic solvent, ACS Appl. Energy Mater., 1(2018), No. 3, p. 1016. doi: 10.1021/acsaem.7b00177
    [107]
    E.L. Smith, Deep eutectic solvents (DESs) and the metal finishing industry: Where are they now?, Trans. IMF, 91(2013), No. 5, p. 241. doi: 10.1179/0020296713Z.000000000120
    [108]
    B.E. Hawkins, T. Schoetz, L.W. Gordon, K.T. Surabh, J. Wang, and R.J. Messinger, Reversible zinc electrodeposition at –60°C using a deep eutectic electrolyte for low-temperature zinc metal batteries, J. Phys. Chem. Lett., 14(2023), No. 9, p. 2378. doi: 10.1021/acs.jpclett.3c00150
    [109]
    A.P. Abbott, M. Azam, K.S. Ryder, and S. Saleem, In situ electrochemical digital holographic microscopy; a study of metal electrodeposition in deep eutectic solvents, Anal. Chem., 85(2013), No. 14, p. 6653. doi: 10.1021/ac400262c
    [110]
    X.Z. Cao, H. Wang, T.R. Liu, Y.Y. Shi, and X.X. Xue, Electrodeposition of Bi from choline chloride-malonic acid deep eutectic solvent, Materials, 16(2023), No. 1, art. No. 415. doi: 10.3390/ma16010415
    [111]
    H.X. Qian, Q.S. Li, J. Sun, S. Xaikoua, and H.J. Sun, Characterization and analysis of chromium coating electrodeposited on brass in ChCl–EG deep eutectic solvent, Int. J. Electrochem. Sci., 15(2020), No. 9, p. 8960. doi: 10.20964/2020.09.03
    [112]
    E. Gómez, P. Cojocaru, L. Magagnin, and E. Valles, Electrodeposition of co, Sm and SmCo from a deep eutectic solvent, J. Electroanal. Chem., 658(2011), No. 1-2, p. 18. doi: 10.1016/j.jelechem.2011.04.015
    [113]
    R. Bernasconi, A. Lucotti, L. Nobili, and L. Magagnin, Ruthenium electrodeposition from deep eutectic solvents, J. Electrochem. Soc., 165(2018), No. 13, p. D620. doi: 10.1149/2.0541813jes
    [114]
    P. Cojocaru, L. Magagnin, E. Gomez, and E. Vallés, Using deep eutectic solvents to electrodeposit CoSm films and nanowires, Mater. Lett., 65(2011), No. 23-24, p. 3597. doi: 10.1016/j.matlet.2011.08.003
    [115]
    J. Nan, H.C. Liu, W. Li, et al., Electrodeposition of polyporous Sn–Ni coating in deep eutectic solvents for removing organic dyes, ACS Omega, 7(2022), No. 45, p. 41013. doi: 10.1021/acsomega.2c04354
    [116]
    R. Bernasconi, G. Panzeri, G. Firtin, B. Kahyaoglu, L. Nobili, and L. Magagnin, Electrodeposition of ZnNi alloys from choline chloride/ethylene glycol deep eutectic solvent and pure ethylene glycol for corrosion protection, J. Phys. Chem. B, 124(2020), No. 47, p. 10739. doi: 10.1021/acs.jpcb.0c04784
    [117]
    N.M. Pereira, S. Salomé, C.M. Pereira, and A. Fernando Silva, Zn–Sn electrodeposition from deep eutectic solvents containing EDTA, HEDTA, and Idranal VII, J. Appl. Electrochem., 42(2012), No. 8, p. 561. doi: 10.1007/s10800-012-0431-3
    [118]
    S. Fashu, C.D. Gu, J.L. Zhang, M.L. Huang, X.L. Wang, and J.P. Tu, Effect of EDTA and NH4Cl additives on electrodeposition of Zn–Ni films from choline chloride-based ionic liquid, Trans. Nonferrous Met. Soc. China, 25(2015), No. 6, p. 2054. doi: 10.1016/S1003-6326(15)63815-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(564) PDF Downloads(52) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return