Xiao Zhangand Ping Yang, Advances in noble metal-modified g-C3N4 heterostructures toward enhanced photocatalytic redox ability, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2368-2389. https://doi.org/10.1007/s12613-024-2924-6
Cite this article as:
Xiao Zhangand Ping Yang, Advances in noble metal-modified g-C3N4 heterostructures toward enhanced photocatalytic redox ability, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2368-2389. https://doi.org/10.1007/s12613-024-2924-6
Review

Advances in noble metal-modified g-C3N4 heterostructures toward enhanced photocatalytic redox ability

+ Author Affiliations
  • Corresponding authors:

    Xiao Zhang    E-mail: friends_zhangxiao@yahoo.co.jp

    Ping Yang    E-mail: mse_yangp@ujn.edu.cn

  • Received: 9 February 2024Revised: 17 April 2024Accepted: 19 April 2024Available online: 20 April 2024
  • The photocatalytic activity of catalysts depends on the energy-harvesting ability and the separation or transport of photogenerated carriers. The light absorption capacity of graphitic carbon nitride (g-C3N4)-based composites can be enhanced by adjusting the surface plasmon resonance (SPR) of noble metal nanoparticles (e.g., Cu, Au, and Pd) in the entire visible region. Adjustments can be carried out by varying the nanocomponents of the materials. The SPR of noble metals can enhance the local electromagnetic field and improve interband transition, and resonant energy transfer occurs from plasmonic dipoles to electron–hole pairs via near-field electromagnetic interactions. Thus, noble metals have emerged as relevant nanocomponents for g-C3N4 used in CO2 photoreduction and water splitting. Herein, recent key advances in noble metals (either in single atom, cluster, or nanoparticle forms) and composite photocatalysts based on inorganic or organic nanocomponent-incorporated g-C3N4 nanosheets are systematically discussed, including the applications of these photocatalysts, which exhibit improved photoinduced charge mobility in CO2 photoconversion and H2 production. Issues related to the different types of multi-nanocomponent heterostructures (involving Schottky junctions, Z-/S-scheme heterostructures, noble metals, and additional semiconductor nanocomponents) and the adjustment of dimensionality of heterostructures (by incorporating noble metal nanoplates on g-C3N4 forming 2D/2D heterostructures) are explored. The current prospects and possible challenges of g-C3N4 composite photocatalysts incorporated with noble metals (e.g., Au, Pt, Pd, and Cu), particularly in water splitting, CO2 reduction, pollution degradation, and chemical conversion applications, are summarized.
  • loading
  • [1]
    H.H. Wang, H. Guo, N. Zhang, Z.S. Chen, B.W. Hu, and X.K. Wang, Enhanced photoreduction of U(VI) on C3N4 by Cr(VI) and bisphenol A: ESR, XPS, and EXAFS investigation, Environ. Sci. Technol., 53(2019), No. 11, p. 6454. doi: 10.1021/acs.est.8b06913
    [2]
    X. Yu, C.C. Li, J. Zhang, L.L. Zhao, J.B. Pang, and L.H. Ding, Recent progress on Sn3O4 nanomaterials for photocatalytic applications, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 231. doi: 10.1007/s12613-023-2761-z
    [3]
    J.S. Yuan, Y. Zhang, X.Y. Zhang, J.J. Zhang, and S.G. Zhang, N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C3N4 nanotube composite photocatalysts for antibiotic photodegradation and H2 production, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 165. doi: 10.1007/s12613-023-2678-6
    [4]
    S. Tong, X. Zhang, and P. Yang, g-C3N4 sheet nanoarchitectonics with island-like crystalline/amorphous homojunctions towards efficient H2 and H2O2 evolution, Environ. Res., 236(2023), art. No. 116805. doi: 10.1016/j.envres.2023.116805
    [5]
    D.H. Cao, X.F. Ma, Y.P. Zhang, et al., Highly dispersed NiMo@rGO nanocomposite catalysts fabricated by a two-step hydrothermal method for hydrogen evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2432. doi: 10.1007/s12613-023-2677-7
    [6]
    J.D. Cao, T. Hhasegawa, Y. Asakura, et al., Synthesis of crystal-phase and color tunable mixed anion Co-doped titanium oxides and their controllable photocatalytic activity, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 2036. doi: 10.1007/s12613-022-2573-6
    [7]
    P. Sun, S.M. Han, J.H. Liu, et al., Introducing oxygen vacancies in TiO2 lattice through trivalent iron to enhance the photocatalytic removal of indoor NO, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 2025. doi: 10.1007/s12613-023-2611-z
    [8]
    X. Zhang and P. Yang, Role of graphitic carbon in g-C3N4 nanoarchitectonics towards efficient photocatalytic reaction kinetics: A review, Carbon, 216(2024), art. No. 118584. doi: 10.1016/j.carbon.2023.118584
    [9]
    T.B. Nguyen, C.P. Huang, and R. Doong, Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@graphitic carbon nitride nanocomposites, Appl. Catal. B, 240(2019), art. No. 337. doi: 10.1016/j.apcatb.2018.08.035
    [10]
    X.Z. Hu, Z. Liu, Y. Feng, et al., Mechanically mixing copper and silver into self-supporting electrocatalyst for hydrogen evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1906. doi: 10.1007/s12613-023-2695-5
    [11]
    X. Zhang, K. Matras-Postolek, P. Yang, and S.P. Jiang, Pt clusters in carbon network to enhance photocatalytic CO2 and benzene conversion of WO x/g-C3N4 nanosheets, Carbon, 214(2023), p. 118337. doi: 10.1016/j.carbon.2023.118337
    [12]
    X. Zhang, P. Yang, and S.P. Jiang, Pt nanoparticles embedded spine-like g-C3N4 nanostructures with superior photocatalytic activity for H2 generation and CO2 reduction, Nanotechnology, 32(2021), No. 17, art. No. 175401. doi: 10.1088/1361-6528/abdcee
    [13]
    X. Zhang, P. Yang, and S.P. Jiang, NiCo-layered double hydroxide/g-C3N4 heterostructures with enhanced adsorption capacity and photoreduction of Cr(VI), Appl. Surf. Sci., 556(2021), art. No. 149772. doi: 10.1016/j.apsusc.2021.149772
    [14]
    X. Zhang, S.P. Jiang, and P. Yang, Bright and tunable photoluminescence from the assembly of red g-C3N4 nanosheets, J. Lumin., 235(2021), art. No. 118055. doi: 10.1016/j.jlumin.2021.118055
    [15]
    R.J. Li, M. Zheng, X. Zhou, et al., Carbon vacancies in porous g-C3N4 nanosheets induced robust H2O2 production for highly efficient photocatalysis-self-Fenton system for metronidazole degradation, Chem. Eng. J., 464(2023), art. No. 142584. doi: 10.1016/j.cej.2023.142584
    [16]
    J.V. Liebig, About some nitrogen compounds, Ann. Pharm, 10(1834), No. 10, p. 10.
    [17]
    E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A.D. Norman, Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures, New J. Chem. 26(2002), No. 5, p. 508.
    [18]
    N. Sedaghati, A. Habibi-Yangjeh, and A. Khataee, Fabrication of g-C3N4 nanosheet/Bi5O7Br/NH2–MIL–88B (Fe) nanocomposites: Double S-scheme photocatalysts with impressive performance for the removal of antibiotics under visible light, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1363. doi: 10.1007/s12613-023-2618-5
    [19]
    H.Y. Zhang, X. Zhang, C. Xie, W.B. Shi, and P. Yang, Composite nanoarchitectonics with TiO2 nanocrystals and superior thin Ti3C2T x nanosheets towards efficient NO removal, Environ. Res., 227(2023), art. No. 115793. doi: 10.1016/j.envres.2023.115793
    [20]
    X. Zhang, X.R. Zhang, P. Yang, and S.P. Jiang, Pt clusters embedded in g-C3N4 nanosheets to form Z-scheme heterostructures with enhanced photochemical performance, Surf. Interfaces, 27(2021), art. No. 101450. doi: 10.1016/j.surfin.2021.101450
    [21]
    X.F. Zeng, J.S. Wang, Y.N. Zhao, W.L. Zhang, and M.H. Wang, Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 503. doi: 10.1007/s12613-020-2193-y
    [22]
    X. Zhang, P. Yang, and S.P. Jiang, The edge-epitaxial growth of yellow g-C3N4 on red g-C3N4 nanosheets with superior photocatalytic activities, Chem. Commun., 57(2021), No. 25, p. 3119. doi: 10.1039/D1CC00209K
    [23]
    X. Zhang, P. Yang, and S.P. Jiang, Horizontally growth of WS2/WO3 heterostructures on crystalline g-C3N4 nanosheets towards enhanced photo/electrochemical performance, J. Nanostruct. Chem., 11(2021), No. 3, p. 367. doi: 10.1007/s40097-020-00373-7
    [24]
    X. Zhang and P. Yang, g-C3N4 nanosheet nanoarchitectonics: H2 generation and CO2 reduction, ChemNanoMat, 9(2023), No. 6, art. No. e202300041. doi: 10.1002/cnma.202300041
    [25]
    W. Li, X.S. Chu, F. Wang, et al., Enhanced cocatalyst-support interaction and promoted electron transfer of 3D porous g-C3N4/GO-M (Au, Pd, Pt) composite catalysts for hydrogen evolution, Appl. Catal. B, 288(2021), art. No. 120034.
    [26]
    X.B. Zhang, H.J. Liu, Y.Q. Wang, et al., Hot-electron-induced CO2 hydrogenation on Au@AuRu/g-C3N4 plasmonic bimetal-semiconductor heterostructure, Chem. Eng. J., 443(2022), art. No. 136482. doi: 10.1016/j.cej.2022.136482
    [27]
    C. Wan, L. Zhou, S.M. Xu, et al., Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid, Chem. Eng. J., 429(2022), art. No. 132388. doi: 10.1016/j.cej.2021.132388
    [28]
    X. Yu, Y. Zhan, T.T. Fan, et al., Encapsulating Pd/g-C3N4 with acrylic acid to enhance the catalytic partial hydrogenation performance of isoprene, Carbon, 201(2023), p. 1174. doi: 10.1016/j.carbon.2022.10.039
    [29]
    W.J. Yan, J.T. Zhang, A.J. Lü, S.L. Lu, Y.W. Zhong, and M.Y. Wang, Self-supporting and hierarchically porous Ni xFe–S/NiFe2O4 heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1120. doi: 10.1007/s12613-022-2443-2
    [30]
    P. Li, L. Liu, W. An, et al., Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C–C coupling photothermal catalytic reduction of CO2 to ethanol, Appl. Catal. B, 266(2020), art. No. 118618. doi: 10.1016/j.apcatb.2020.118618
    [31]
    X. Zhang, P. Yang, and S.P. Jiang, Pd nanoparticles assembled on Ni- and N-doped carbon nanotubes towards superior electrochemical activity, Int. J. Hydrogen Energy, 46(2021), No. 2, p. 2065. doi: 10.1016/j.ijhydene.2020.10.096
    [32]
    T. Song, X. Zhang, C. Xie, and P. Yang, N-doped carbon nanotubes enhanced charge transport between Ni nanoparticles and g-C3N4 nanosheets for photocatalytic H2 generation and 4-nitrophenol removal, Carbon, 210(2023), art. No. 118052. doi: 10.1016/j.carbon.2023.118052
    [33]
    H. Qiu, S.J. Liu, X.H. Ma, et al., Preparation of Y3+-doped Bi2MoO6 nanosheets for improved visible-light photocatalytic activity: Increased specific surface area, oxygen vacancy formation and efficient carrier separation, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1824. doi: 10.1007/s12613-023-2656-z
    [34]
    X. Zhang, K. Matras-Postolek, and P. Yang, Heterojunction nanoarchitectonics of WO x/Au-g-C3N4 with efficient photogenerated carrier separation and transfer toward improved NO and benzene conversion, Mater. Today Adv., 17(2023), art. No. 100355. doi: 10.1016/j.mtadv.2023.100355
    [35]
    X. Zhang, K. Matras-Postolek, P. Yang, and S. P. Jian, Cu cluster promoted charge separation and transfer in Z-scheme WO x/Cu-g-C3N4 heterojunctions towards efficient full solar-spectrum photocatalysis, J. Colloid Interface Sci., 636(2023), p. 646–656. doi: 10.1016/j.jcis.2023.01.052
    [36]
    X. Zhang, X.R. Zhang, P. Yang, H.S. Chen, and S.P. Jiang, Black magnetic Cu-g-C3N4 nanosheets for efficiently photocatalytic H2 generation and CO2/benzene conversion, Chem. Eng. J., 450(2022), No. 2, art. No. 138030.
    [37]
    X. Zhang, X.R. Zhang, P. Yang, and S.P. Jiang, Layered graphitic carbon nitride: Nano-heterostructures, photo/electro-chemical performance and trends, J. Nanostruct. Chem., 12(2022), No. 5, p. 669. doi: 10.1007/s40097-021-00442-5
    [38]
    X. Zhang, P. Wang, P. Yang, and S.P. Jiang, Photo-chemical property evolution of superior thin g-C3N4 nanosheets with their crystallinity and Pt deposition, Int. J. Hydrogen Energy, 45(2020), No. 41, p. 21523. doi: 10.1016/j.ijhydene.2020.06.031
    [39]
    A. Mishra, A. Mehta, S. Basu, N.P. Shetti, K.R. Reddy, and T.M. Aminabhavi, Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review, Carbon, 149(2019), p. 693. doi: 10.1016/j.carbon.2019.04.104
    [40]
    Z.X. Cui, L. Zhang, Y.Q. Xue, et al., Effects of shape and particle size on the photocatalytic kinetics and mechanism of nano-CeO2, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2221. doi: 10.1007/s12613-021-2332-0
    [41]
    R.C. Shen, J. Xie, H.D. Zhang, A.P. Zhang, X.B. Chen, and X. Li, Enhanced solar fuel H2 generation over g-C3N4 nanosheet photocatalysts by the synergetic effect of noble metal-free Co2P cocatalyst and the environmental phosphorylation strategy, ACS Sustainable Chem. Eng., 6(2018), No. 1, p. 816. doi: 10.1021/acssuschemeng.7b03169
    [42]
    T. Zhang, W.Z. Wang, Z. Ma, L. Bai, Y. Yao, and D.Q. Xu, Bimetallic Pt–Ru covalently bonded on carbon nanotubes for efficient methanol oxidation, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1816
    [43]
    X. Wang, Y. Xue, Z. Liang, J. Tian, X. Zhang, and X. Chen, Insights into the function of semi-metallic 1T’ phase ReS2 as cocatalyst decorated g-C3N4 nanotubes for enhanced photocatalytic hydrogen production activity, Mater. Today Adv., 15(2022), art. No. 100257. doi: 10.1016/j.mtadv.2022.100257
    [44]
    P.Q. Chen, Y.X. Tai, H. Wu, Y.F. Gao, J.Y. Chen, and J.G. Cheng, Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1627. doi: 10.1007/s12613-021-2265-7
    [45]
    Y.J. Xue, Y.H. Ji, X.Y. Wang, et al., Heterostructuring noble-metal-free 1T' phase MoS2 with g-C3N4 hollow nanocages to improve the photocatalytic H2 evolution activity, Green Energy Environ., 8(2023), No. 3, p. 864. doi: 10.1016/j.gee.2021.11.002
    [46]
    X. Zhang and S.P. Jiang, Layered g-C3N4/TiO2 nanocomposites for efficient photocatalytic water splitting and CO2 reduction: A review, Mater. Today Energy, 23(2022), art. No. 100904. doi: 10.1016/j.mtener.2021.100904
    [47]
    Y. Yuan, R.T. Guo, L.F. Hong, et al., A review of metal oxide-based Z-scheme heterojunction photocatalysts: Actualities and developments, Mater. Today Energy, 21(2021), art. No. 100829. doi: 10.1016/j.mtener.2021.100829
    [48]
    D.O. Adekoya, M. Tahir, and N.A.S. Amin, g-C3N4/(Cu/TiO2) nanocomposite for enhanced photoreduction of CO2 to CH3OH and HCOOH under UV/visible light, J. CO2 Util., 18(2017), p. 261.
    [49]
    J. Zhou, D.D. Nie, X.B. Jin, and W. Xiao, Controllable nitridation of Ta2O5 in molten salts for enhanced photocatalysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1703. doi: 10.1007/s12613-020-2050-z
    [50]
    X.Y. Wang, S. Jan, Z.Y. Wang, and X.B. Jin, Solid Bi2O3-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO2, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 803. doi: 10.1007/s12613-023-2770-y
    [51]
    X.N. Wang, R. Long, D. Liu, D. Yang, C.M. Wang, and Y.J. Xiong, Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays, Nano Energy, 24(2016), p. 87. doi: 10.1016/j.nanoen.2016.04.013
    [52]
    W.J. Ong, L.K. Putri, L.L. Tan, S.P. Chai, and S.T. Yong, Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide, Appl. Catal. B, 180(2016), p. 530. doi: 10.1016/j.apcatb.2015.06.053
    [53]
    X.S. Ji, B.G. Xu, H.Y. Zhang, X. Zhang, and P. Yang, NiS2 nanoparticles anchored on Co-carbon nanotubes for supercapacitor and overall water splitting, J. Alloys Compd., 968(2023), art. No. 172192. doi: 10.1016/j.jallcom.2023.172192
    [54]
    S. Kumar, V.R. Battula, and K. Kailasam, Single molecular precursors for C xN y materials- blending of carbon and nitrogen beyond g-C3N4, Carbon, 183(2021), p. 332. doi: 10.1016/j.carbon.2021.07.025
    [55]
    M. Inagaki, T. Tsumura, T. Kinumoto, and M. Toyoda, Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials, Carbon, 141(2019), p. 580. doi: 10.1016/j.carbon.2018.09.082
    [56]
    S. Patnaik, D.P. Sahoo, and K. Parida, Recent advances in anion doped g-C3N4 photocatalysts: A review, Carbon, 172(2021), p. 682. doi: 10.1016/j.carbon.2020.10.073
    [57]
    H.W. Su, H.B. Yin, R. Wang, et al., Atomic-level coordination structures meet graphitic carbon nitride (g-C3N4) for photocatalysis: Energy conversion and environmental remediation, Appl. Catal. B, 348(2024), art. No. 123683.
    [58]
    P.X. Zhao, X.W. Feng, D.S. Huang, G.Y. Yang, and D. Astruc, Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles, Coord. Chem. Rev., 287(2015), p. 114. doi: 10.1016/j.ccr.2015.01.002
    [59]
    S. Zhang, P.C. Gu, R. Ma, et al., Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review, Catal. Today, 335(2019), p. 65. doi: 10.1016/j.cattod.2018.09.013
    [60]
    Y.S. Fu, T. Huang, B.Q. Jia, J.W. Zhu, and X. Wang, Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system, Appl. Catal. B, 202(2017), p. 430. doi: 10.1016/j.apcatb.2016.09.051
    [61]
    I.X. Green, W. Tang, M. Neurock, and J.T.J. Yates, Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO₂ catalyst, Science, 333(2011), No. 6043, p. 736. doi: 10.1126/science.1207272
    [62]
    M.M. Liu, R.Z. Zhang, and W. Chen, Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications, Chem. Rev., 114(2014), No. 10, p. 5117. doi: 10.1021/cr400523y
    [63]
    H.G. Zhu, X. Yuan, Q.F. Yao, and J.P. Xie, Shining photocatalysis by gold-based nanomaterials, Nano Energy, 88(2021), art. No. 106306. doi: 10.1016/j.nanoen.2021.106306
    [64]
    S.K. Ghosh and T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications, Chem. Rev., 107(2007), No. 11, p. 4797. doi: 10.1021/cr0680282
    [65]
    P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, and R.D. Kornberg, Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution, Science, 318(2007), No. 5849, p. 430. doi: 10.1126/science.1148624
    [66]
    X. Zhang, P. Yang, and S.P. Jiang, Ni clusters-derived 2D/2D layered WO x(MoS2)/Ni-g-C3N4 step-scheme heterojunctions with enhanced photo- and electro-catalytic performance, J. Power Sources, 510(2021), art. No. 230420. doi: 10.1016/j.jpowsour.2021.230420
    [67]
    X.C. Wang, K. Maeda, A. Thomas, et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8(2009), No. 1, p. 76. doi: 10.1038/nmat2317
    [68]
    X.H. Li, X.C. Wang, and M. Antonietti, Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step, Chem. Sci., 3(2012), No. 6, p. 2170. doi: 10.1039/c2sc20289a
    [69]
    Z.Y. Zhang, C.L. Shao, P. Zou, et al. , In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol, Chem. Commun., 47(2011), No. 13, p. 3906. doi: 10.1039/c0cc05693f
    [70]
    M.M. Zhang, L. Liu, C.L. Wu, G.Q. Fu, H.Y. Zhao, and B.L. He, Synthesis, characterization and application of well-defined environmentally responsive polymer brushes on the surface of colloid particles, Polymer, 48(2007), No. 7, p. 1989. doi: 10.1016/j.polymer.2007.01.069
    [71]
    D. Jana, A. Dandapat, and G. De, Anisotropic gold nanoparticle doped mesoporous boehmite films and their use as reusable catalysts in electron transfer reactions, Langmuir, 26(2010), No. 14, p. 12177. doi: 10.1021/la100040m
    [72]
    T. Huang, F. Meng, and L.M. Qi, Facile synthesis and one-dimensional assembly of cyclodextrin-capped gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering, J. Phys. Chem. C, 113(2009), No. 31, p. 13636. doi: 10.1021/jp903405y
    [73]
    L. Shi, Z. Li, K. Marcus, et al., Integration of Au nanoparticles with a g-C3N4 based heterostructure: Switching charge transfer from type-II to Z-scheme for enhanced visible light photocatalysis, Chem. Commun., 54(2018), No. 30, p. 3747. doi: 10.1039/C8CC01370E
    [74]
    Z. Chen, Z.M. Cui, C.Y. Cao, W.D. He, L. Jiang, and W.G. Song, Temperature-responsive smart nanoreactors: Poly(N-isopropylacrylamide)-coated Au@mesoporous-SiO2 hollow nanospheres, Langmuir, 28(2012), No. 37, p. 13452. doi: 10.1021/la3022535
    [75]
    M.J. Liu, S. Wageh, A.A. Al-Ghamdi, et al., Quenching induced hierarchical 3D porous g-C3N4 with enhanced photocatalytic CO2 reduction activity, Chem. Commun., 55(2019), No. 93, p. 14023. doi: 10.1039/C9CC07647F
    [76]
    M.I. Rahmah, R.S. Sabry, and W.J. Aziz, Preparation and photocatalytic property of Fe2O3/ZnO composites with superhydrophobicity, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1072. doi: 10.1007/s12613-020-2096-y
    [77]
    T. Song, X. Zhang, and P. Yang, Bifunctional nitrogen-doped carbon dots in g-C3N4/WO x heterojunction for enhanced photocatalytic water-splitting performance, Langmuir, 37(2021), No. 14, p. 4236. doi: 10.1021/acs.langmuir.1c00210
    [78]
    Y. Wei, X. Zhang, Z.G. Liu, H.S. Chen, and P. Yang, Site-selective modification of AgPt on multibranched Au nanostars for plasmon-enhanced hydrogen evolution and methanol oxidation reaction in visible to near-infrared region, J. Power Sources, 425(2019), p. 17. doi: 10.1016/j.jpowsour.2019.03.114
    [79]
    Z. Guo, Y.B. Xie, J.D. Xiao, et al., Single-atom Mn–N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution, J. Am. Chem. Soc., 141(2019), No. 30, p. 12005. doi: 10.1021/jacs.9b04569
    [80]
    X.F. Zhou, L.Z. Peng, L.M. Xu, et al., Pd(II), Pt(II) metallosupramolecular complexes as single-site Co-catalyst for photocatalytic H2 evolution, Chem. Eng. J., 474(2023), art. No. 145967. doi: 10.1016/j.cej.2023.145967
    [81]
    J.Z. Liu, Y.H. Li, X.D. Zhou, H. Jiang, H.G. Yang, and C.Z. Li, Positively charged Pt-based cocatalysts: An orientation for achieving efficient photocatalytic water splitting, J. Mater. Chem. A, 8(2020), No. 1, p. 17. doi: 10.1039/C9TA10568A
    [82]
    F.L. Yang, Q. Zhang, J.H. Zhang, L. Zhang, M.T. Cao, and W.L. Dai, Embedding Pt nanoparticles at the interface of CdS/NaNbO3 nanorods heterojunction with bridge design for superior Z-Scheme photocatalytic hydrogen evolution, Appl. Catal. B, 278(2020), art. No. 119290. doi: 10.1016/j.apcatb.2020.119290
    [83]
    D. Preston, J.J. Sutton, K.C. Gordon, and J.D. Crowley, A nona-nuclear heterometallic Pd3Pt6 “donut” -shaped cage: Molecular recognition and photocatalysis, Angew. Chem. Int. Ed., 57(2018), No. 28, p. 8659. doi: 10.1002/anie.201804745
    [84]
    S.F. An, G.H. Zhang, T.W. Wang, et al., High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes, ACS Nano, 12(2018), No. 9, p. 9441. doi: 10.1021/acsnano.8b04693
    [85]
    A.Q. Wang, J. Li, and T. Zhang, Heterogeneous single-atom catalysis, Nat. Rev. Chem., 2(2018), No. 6, p. 65. doi: 10.1038/s41570-018-0010-1
    [86]
    Z.X. Zeng, Y. Su, X. Quan, et al., Single-atom platinum confined by the interlayer nanospace of carbon nitride for efficient photocatalytic hydrogen evolution, Nano Energy, 69(2020), art. No. 104409. doi: 10.1016/j.nanoen.2019.104409
    [87]
    T. Mahvelati-Shamsabadi, K.C. Bhamu, S.H. Lee, et al., Coordinatively unsaturated atomically dispersed Pt2+-N4 sites on hexagonal nanosheet structure of g-C3N4 for high-performance photocatalytic H2 production, Appl. Catal. B, 337(2023), art. No. 122959. doi: 10.1016/j.apcatb.2023.122959
    [88]
    J. Xu, L.W. Zhang, R. Shi, and Y.F. Zhu, Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis, J. Mater. Chem. A, 1(2013), No. 46, p. 14766. doi: 10.1039/c3ta13188b
    [89]
    Y.L. Zhao, Y.C. Wei, X.X. Wu, et al., Graphene-wrapped Pt/TiO2 photocatalysts with enhanced photogenerated charges separation and reactant adsorption for high selective photoreduction of CO2 to CH4, Appl. Catal. B, 226(2018), p. 360. doi: 10.1016/j.apcatb.2017.12.071
    [90]
    J.J. Zhu, P. Xiao, H.L. Li, and S.A.C. Carabineiro, Graphitic carbon nitride: Synthesis, properties, and applications in catalysis, ACS Appl. Mater. Interfaces, 6(2014), No. 19, p. 16449. doi: 10.1021/am502925j
    [91]
    H.J. Yin, S.L. Zhao, K. Zhao, et al., Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity, Nat. Commun., 6(2015), art. No. 6430. doi: 10.1038/ncomms7430
    [92]
    H.M. Song, D.H. Anjum, R. Sougrat, M.N. Hedhili, and N.M. Khashab, Hollow Au@Pd and Au@Pt core–shell nanoparticles as electrocatalysts for ethanol oxidation reactions, J. Mater. Chem., 22(2012), No. 48, p. 25003. doi: 10.1039/c2jm35281h
    [93]
    N. Sun, Y.X. Zhu, M.W. Li, et al., Thermal coupled photocatalysis over Pt/g-C3N4 for selectively reducing CO2 to CH4 via cooperation of the electronic metal-support interaction effect and the oxidation state of Pt, Appl. Catal. B, 298(2021), art. No. 120565. doi: 10.1016/j.apcatb.2021.120565
    [94]
    K.C. Christoforidis, Z. Syrgiannis, V. La Parola, et al., Metal-free dual-phase full organic carbon nanotubes/g-C3N4 heteroarchitectures for photocatalytic hydrogen production, Nano Energy, 50(2018), p. 468. doi: 10.1016/j.nanoen.2018.05.070
    [95]
    W.C. Wan, S.Q. Wei, J.G. Li, C.A. Triana, Y. Zhou, and G.R. Patzke, Transition metal electrocatalysts encapsulated into N-doped carbon nanotubes on reduced graphene oxide nanosheets: Efficient water splitting through synergistic effects, J. Mater. Chem. A, 7(2019), No. 25, p. 15145. doi: 10.1039/C9TA03213D
    [96]
    A. Naseri, M. Samadi, A. Pourjavadi, A.Z. Moshfegh, and S. Ramakrishna, Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: Recent advances and future development directions, J. Mater. Chem. A, 5(2017), No. 45, p. 23406. doi: 10.1039/C7TA05131J
    [97]
    J.C. Bian, L.F. Xi, C. Huang, K.M. Lange, R.Q. Zhang, and M. Shalom, Efficiency enhancement of carbon nitride photoelectrochemical cells via tailored monomers design, Adv. Energy Mater., 6(2016), No. 12, art. No. 1600263. doi: 10.1002/aenm.201600263
    [98]
    C.Y. Zhai, M.J. Sun, L.X. Zeng, et al., Construction of Pt/graphitic C3N4/MoS2 heterostructures on photo-enhanced electrocatalytic oxidation of small organic molecules, Appl. Catal. B, 243(2019), p. 283. doi: 10.1016/j.apcatb.2018.10.047
    [99]
    H.H. Ji, F. Chang, X.F. Hu, W. Qin, and J.W. Shen, Photocatalytic degradation of 2, 4, 6-trichlorophenol over g-C3N4 under visible light irradiation, Chem. Eng. J., 218(2013), p. 183. doi: 10.1016/j.cej.2012.12.033
    [100]
    M.G. Hosseini and M.M. Momeni, Evaluation of the performance of platinum nanoparticle–titanium oxide nanotubes as a new refreshable electrode for formic acid electro-oxidation, Fuel Cells, 12(2012), No. 3, p. 406. doi: 10.1002/fuce.201100173
    [101]
    M.A. Newton, C. Belver-Coldeira, A. Martínez-Arias, and M. Fernández-García, Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling, Nat. Mater., 6(2007), No. 7, p. 528. doi: 10.1038/nmat1924
    [102]
    H.X. Wu, H.J. Li, Y.J. Zhai, X.L. Xu, and Y.D. Jin, Facile synthesis of free-standing Pd-based nanomembranes with enhanced catalytic performance for methanol/ethanol oxidation, Adv. Mater., 24(2012), No. 12, p. 1594. doi: 10.1002/adma.201104356
    [103]
    Y.P. Shang, X.M. Jie, J. Zhou, P. Hu, S.J. Huang, and W.P. Su, Pd-catalyzed C–H olefination of (hetero)arenes by using saturated ketones as an olefin source, Angew. Chem. Int. Ed., 52(2013), No. 4, p. 1299. doi: 10.1002/anie.201208627
    [104]
    B.J. Gallon, R.W. Kojima, R.B. Kaner, and P.L. Diaconescu, Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water, Angew. Chem. Int. Ed, 46(2007), No. 38, p. 7251. doi: 10.1002/anie.200701389
    [105]
    J.Y. Hu, Q.W. Yang, L.F. Yang, et al., Confining noble metal (Pd, Au, Pt) nanoparticles in surfactant ionic liquids: Active non-mercury catalysts for hydrochlorination of acetylene, ACS Catal., 5(2015), No. 11, p. 6724. doi: 10.1021/acscatal.5b01690
    [106]
    J. Zhao, Y.X. Yue, G.F. Sheng, et al., Supported ionic liquid-palladium catalyst for the highly effective hydrochlorination of acetylene, Chem. Eng. J., 360(2019), p. 38. doi: 10.1016/j.cej.2018.11.179
    [107]
    S.A. Mitchenko, T.V. Krasnyakova, and I.V. Zhikharev, Effect of mechanicochemical treatment on the activity of K2PdCl4 in the heterogeneous catalytic hydrochlorination of acetylene, Theor. Exp. Chem., 46(2010), No. 1, p. 32. doi: 10.1007/s11237-010-9117-2
    [108]
    P. Li, M.Z. Ding, L.M. He, et al., The activity and stability of PdCl2/C–N catalyst for acetylene hydrochlorination, Sci. China Chem., 61(2018), No. 4, p. 444. doi: 10.1007/s11426-017-9154-x
    [109]
    G.M. Liu, Y. Huang, H.Q. Lv, et al., Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion, Appl. Catal. B, 284(2021), art. No. 119683. doi: 10.1016/j.apcatb.2020.119683
    [110]
    Z.Z. Lin, L.H. Lin, and X.C. Wang, Thermal nitridation of triazine motifs to heptazine-based carbon nitride frameworks for use in visible light photocatalysis, Chin. J. Catal., 36(2015), No. 12, p. 2089. doi: 10.1016/S1872-2067(15)60995-0
    [111]
    G.H. Dong, D.L. Jacobs, L. Zang, and C.Y. Wang, Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets, Appl. Catal. B, 218(2017), p. 515. doi: 10.1016/j.apcatb.2017.07.010
    [112]
    L. Yang, X. Wang, D.P. Liu, G.M. Cui, B.L. Dou, and J. Wang, Efficient anchoring of nanoscale Pd on three-dimensional carbon hybrid as highly active and stable catalyst for electro-oxidation of formic acid, Appl. Catal. B, 263(2020), art. No. 118304. doi: 10.1016/j.apcatb.2019.118304
    [113]
    Z. Yin, Y.J. Tian, P. Gao, et al., Photodegradation mechanism and genetic toxicity of bezafibrate by Pd/g-C3N4 catalysts under simulated solar light irradiation: The role of active species, Chem. Eng. J., 379(2020), art. No. 122294. doi: 10.1016/j.cej.2019.122294
    [114]
    Z. Yin, M.G. Han, Z. Hu, et al., Peroxymonosulfate enhancing visible light photocatalytic degradation of bezafibrate by Pd/g-C3N4 catalysts: The role of sulfate radicals and hydroxyl radicals, Chem. Eng. J., 390(2020), art. No. 124532. doi: 10.1016/j.cej.2020.124532
    [115]
    C.Y. Feng, L. Tang, Y.C. Deng, et al., A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2, Appl. Catal. B, 281(2021), art. No. 119539. doi: 10.1016/j.apcatb.2020.119539
    [116]
    C.Z. Sun, H. Zhang, H. Liu, et al., Enhanced activity of visible-light photocatalytic H2 evolution of sulfur-doped g-C3N4 photocatalyst via nanoparticle metal Ni as cocatalyst, Appl. Catal. B, 235(2018), p. 66. doi: 10.1016/j.apcatb.2018.04.050
    [117]
    K. Gu, X.T. Pan, W.W. Wang, et al. , In situ growth of Pd nanosheets on g-C3N4 nanosheets with well-contacted interface and enhanced catalytic performance for 4-nitrophenol reduction, Small, 14(2018), No. 33, art. No. 1801812. doi: 10.1002/smll.201801812
    [118]
    G.L. Di, Z.L. Zhu, H. Zhang, Y.L. Qiu, D.Q. Yin, and J. Crittenden, Simultaneous sulfamethazine oxidation and bromate reduction by Pd-mediated Z-scheme Bi2MoO6/g-C3N4 photocatalysts: Synergetic mechanism and degradative pathway, Chem. Eng. J., 401(2020), art. No. 126061. doi: 10.1016/j.cej.2020.126061
    [119]
    Z.X. Jiang, C.C. Jia, B. Wang, P. Yang, and G.G. Gao, Hexagonal g-C3N4 nanotubes with Pt decorated surface towards enhanced photo- and electro-chemistry performance, J. Alloys Compd., 826(2020), art. No. 154145. doi: 10.1016/j.jallcom.2020.154145
    [120]
    Z.X. Jiang, X. Zhang, H.S. Chen, X. Hu, and P. Yang, Formation of g-C3N4 nanotubes towards superior photocatalysis performance, ChemCatChem, 11(2019), No. 18, p. 4558. doi: 10.1002/cctc.201901038
    [121]
    Z.X. Jiang, X. Zhang, H.S. Chen, P. Yang, and S.P. Jiang, Fusiform-shaped g-C3N4 capsules with superior photocatalytic activity, Small, 16(2020), No. 42, art. No. 2003910. doi: 10.1002/smll.202003910
    [122]
    X.D. Xiao, Y.T. Gao, L.P. Zhang, et al., A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis, Adv. Mater., 32(2020), No. 33, art. No. 2003082. doi: 10.1002/adma.202003082
    [123]
    J.Q. Shan, T. Ling, K. Davey, Y. Zheng, and S.Z. Qiao, Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments, Adv. Mater., 31(2019), No. 17, art. No. 1900510. doi: 10.1002/adma.201900510
    [124]
    A. Dutta and J.Y. Ouyang, Ternary NiAuPt nanoparticles on reduced graphene oxide as catalysts toward the electrochemical oxidation reaction of ethanol, ACS Catal., 5(2015), No. 2, p. 1371. doi: 10.1021/cs501365y
    [125]
    C. Gai, T.X. Yang, H.J. Liu, Z.G. Liu, and W.T. Jiao, Hydrochar-supported bimetallic Ni–Cu nanocatalysts for sustainable H2 production, ACS Appl. Nano Mater., 2(2019), No. 11, p. 7279. doi: 10.1021/acsanm.9b01762
    [126]
    Z.W. Huang, K.J. Barnett, J.P. Chada, et al., Hydrogenation of γ-butyrolactone to 1, 4-butanediol over CuCo/TiO2 bimetallic catalysts, ACS Catal., 7(2017), No. 12, p. 8429. doi: 10.1021/acscatal.7b03016
    [127]
    Q.L. Yao, Z.H. Lu, Y.Q. Wang, X.S. Chen, and G. Feng, Synergetic catalysis of non-noble bimetallic Cu–Co nanoparticles embedded in SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane, J. Phys. Chem. C, 119(2015), No. 25, p. 14167. doi: 10.1021/acs.jpcc.5b02403
    [128]
    S.B. Chen, Z. Yang, J.D. Chen, et al., Electron-rich interface of Cu–Co heterostructure nanoparticle as a cocatalyst for enhancing photocatalytic hydrogen evolution, Chem. Eng. J., 434(2022), art. No. 134673. doi: 10.1016/j.cej.2022.134673
    [129]
    S. Hosseini, M. Ghiaci, S.A. Kulinich, et al., Au–Pd@g-C3N4 as an efficient photocatalyst for visible-light oxidation of benzene to phenol: Experimental and mechanistic study, J. Phys. Chem. C, 122(2018), No. 48, p. 27477. doi: 10.1021/acs.jpcc.8b08788
    [130]
    C.C. Han, Y.Q. Gao, S. Liu, et al., Facile synthesis of AuPd/g-C3N4 nanocomposite: An effective strategy to enhance photocatalytic hydrogen evolution activity, Int. J. Hydrogen Energy, 42(2017), No. 36, p. 22765. doi: 10.1016/j.ijhydene.2017.07.154
    [131]
    W.X. Zou, L.X. Xu, Y. Pu, et al., Advantageous interfacial effects of Ag/Pd/g-C3N4 for photocatalytic hydrogen evolution: Electronic structure and H2O dissociation, Chem. European J., 25(2019), No. 19, p. 5058. doi: 10.1002/chem.201806074
    [132]
    T. Kashyap, S. Biswas, S. Ahmed, D. Kalita, P. Nath, and B. Choudhury, Plasmon activation versus plasmon quenching on the overall photocatalytic performance of Ag/Au bimetal decorated g-C3N4 nanosheets under selective photoexcitation: A mechanistic understanding with experiment and theory, Appl. Catal. B, 298(2021), art. No. 120614. doi: 10.1016/j.apcatb.2021.120614
    [133]
    J. Zhao, S.C. Nguyen, R. Ye, et al., A comparison of photocatalytic activities of gold nanoparticles following plasmonic and interband excitation and a strategy for harnessing interband hot carriers for solution phase photocatalysis, ACS Cent. Sci., 3(2017), No. 5, p. 482. doi: 10.1021/acscentsci.7b00122
    [134]
    W.N. Wang, W.J. An, B. Ramalingam, et al., Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals, J. Am. Chem. Soc., 134(2012), No. 27, p. 11276. doi: 10.1021/ja304075b
    [135]
    H.H. Li, Y. Wu, C. Li, et al., Design of Pt/t-ZrO2/g-C3N4 efficient photocatalyst for the hydrogen evolution reaction, Appl. Catal. B, 251(2019), p. 305. doi: 10.1016/j.apcatb.2019.03.079
    [136]
    K. Bhunia, M. Chandra, S. Khilari, and D. Pradhan, Bimetallic PtAu alloy nanoparticles-integrated g-C3N4 hybrid as an efficient photocatalyst for water-to-hydrogen conversion, ACS Appl. Mater. Interfaces, 11(2019), No. 1, p. 478. doi: 10.1021/acsami.8b12183
    [137]
    W.J. Yang, J.H. Zhao, H. Tian, et al., Solar-driven carbon nanoreactor coupling gold and platinum nanocatalysts for alcohol oxidations, Small, 16(2020), No. 30, art. No. e2002236. doi: 10.1002/smll.202002236
    [138]
    J.Y. Liu, X. Kong, L.R. Zheng, X. Guo, X.F. Liu, and J.L. Shui, Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction, ACS Nano, 14(2020), No. 1, p. 1093. doi: 10.1021/acsnano.9b08835
    [139]
    S.Y. Guo, D.J. Cao, P.R. Xiao, G.L. Zhang, Q. Wang, and P. Cui, Activating Pd nanoparticles on oxygen-doped g-C3N4 for visible light-driven thermocatalytic oxidation of benzyl alcohol, Inorg. Chem., 61(2022), No. 39, p. 15654. doi: 10.1021/acs.inorgchem.2c02613
    [140]
    Q. Liu, X.X. Zhao, X.H. Song, et al., Pd nanosheet-decorated 2D/2D g-C3N4/WO3·H2O S-scheme photocatalyst for high selective photoreduction of CO2 to CO, Inorg. Chem., 61(2022), No. 9, p. 4171. doi: 10.1021/acs.inorgchem.1c04034
    [141]
    Y.J. Hao, S.J. Hao, Q.B. Li, X. Liu, H.B. Zou, and H.Q. Yang, Metal-nanoparticles-loaded ultrathin g-C3N4 nanosheets at liquid–liquid interfaces for enhanced biphasic catalysis, ACS Appl. Mater. Interfaces, 13(2021), No. 39, p. 47236. doi: 10.1021/acsami.1c13903
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)

    Share Article

    Article Metrics

    Article Views(264) PDF Downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return