Cite this article as: |
Xiao Zhang and Ping Yang, Advances in noble metal-modified g-C3N4 heterostructures toward enhanced photocatalytic redox ability, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2368-2389. https://doi.org/10.1007/s12613-024-2924-6 |
Xiao Zhang E-mail: friends_zhangxiao@yahoo.co.jp
Ping Yang E-mail: mse_yangp@ujn.edu.cn
[1] |
H.H. Wang, H. Guo, N. Zhang, Z.S. Chen, B.W. Hu, and X.K. Wang, Enhanced photoreduction of U(VI) on C3N4 by Cr(VI) and bisphenol A: ESR, XPS, and EXAFS investigation, Environ. Sci. Technol., 53(2019), No. 11, p. 6454. doi: 10.1021/acs.est.8b06913
|
[2] |
X. Yu, C.C. Li, J. Zhang, L.L. Zhao, J.B. Pang, and L.H. Ding, Recent progress on Sn3O4 nanomaterials for photocatalytic applications, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 231. doi: 10.1007/s12613-023-2761-z
|
[3] |
J.S. Yuan, Y. Zhang, X.Y. Zhang, J.J. Zhang, and S.G. Zhang, N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C3N4 nanotube composite photocatalysts for antibiotic photodegradation and H2 production, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 165. doi: 10.1007/s12613-023-2678-6
|
[4] |
S. Tong, X. Zhang, and P. Yang, g-C3N4 sheet nanoarchitectonics with island-like crystalline/amorphous homojunctions towards efficient H2 and H2O2 evolution, Environ. Res., 236(2023), art. No. 116805. doi: 10.1016/j.envres.2023.116805
|
[5] |
D.H. Cao, X.F. Ma, Y.P. Zhang, et al., Highly dispersed NiMo@rGO nanocomposite catalysts fabricated by a two-step hydrothermal method for hydrogen evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2432. doi: 10.1007/s12613-023-2677-7
|
[6] |
J.D. Cao, T. Hhasegawa, Y. Asakura, et al., Synthesis of crystal-phase and color tunable mixed anion Co-doped titanium oxides and their controllable photocatalytic activity, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 2036. doi: 10.1007/s12613-022-2573-6
|
[7] |
P. Sun, S.M. Han, J.H. Liu, et al., Introducing oxygen vacancies in TiO2 lattice through trivalent iron to enhance the photocatalytic removal of indoor NO, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 2025. doi: 10.1007/s12613-023-2611-z
|
[8] |
X. Zhang and P. Yang, Role of graphitic carbon in g-C3N4 nanoarchitectonics towards efficient photocatalytic reaction kinetics: A review, Carbon, 216(2024), art. No. 118584. doi: 10.1016/j.carbon.2023.118584
|
[9] |
T.B. Nguyen, C.P. Huang, and R. Doong, Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@graphitic carbon nitride nanocomposites, Appl. Catal. B, 240(2019), art. No. 337. doi: 10.1016/j.apcatb.2018.08.035
|
[10] |
X.Z. Hu, Z. Liu, Y. Feng, et al., Mechanically mixing copper and silver into self-supporting electrocatalyst for hydrogen evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1906. doi: 10.1007/s12613-023-2695-5
|
[11] |
X. Zhang, K. Matras-Postolek, P. Yang, and S.P. Jiang, Pt clusters in carbon network to enhance photocatalytic CO2 and benzene conversion of WO x/g-C3N4 nanosheets, Carbon, 214(2023), p. 118337. doi: 10.1016/j.carbon.2023.118337
|
[12] |
X. Zhang, P. Yang, and S.P. Jiang, Pt nanoparticles embedded spine-like g-C3N4 nanostructures with superior photocatalytic activity for H2 generation and CO2 reduction, Nanotechnology, 32(2021), No. 17, art. No. 175401. doi: 10.1088/1361-6528/abdcee
|
[13] |
X. Zhang, P. Yang, and S.P. Jiang, NiCo-layered double hydroxide/g-C3N4 heterostructures with enhanced adsorption capacity and photoreduction of Cr(VI), Appl. Surf. Sci., 556(2021), art. No. 149772. doi: 10.1016/j.apsusc.2021.149772
|
[14] |
X. Zhang, S.P. Jiang, and P. Yang, Bright and tunable photoluminescence from the assembly of red g-C3N4 nanosheets, J. Lumin., 235(2021), art. No. 118055. doi: 10.1016/j.jlumin.2021.118055
|
[15] |
R.J. Li, M. Zheng, X. Zhou, et al., Carbon vacancies in porous g-C3N4 nanosheets induced robust H2O2 production for highly efficient photocatalysis-self-Fenton system for metronidazole degradation, Chem. Eng. J., 464(2023), art. No. 142584. doi: 10.1016/j.cej.2023.142584
|
[16] |
J.V. Liebig, About some nitrogen compounds, Ann. Pharm, 10(1834), No. 10, p. 10.
|
[17] |
E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A.D. Norman, Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures, New J. Chem. 26(2002), No. 5, p. 508.
|
[18] |
N. Sedaghati, A. Habibi-Yangjeh, and A. Khataee, Fabrication of g-C3N4 nanosheet/Bi5O7Br/NH2–MIL–88B (Fe) nanocomposites: Double S-scheme photocatalysts with impressive performance for the removal of antibiotics under visible light, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1363. doi: 10.1007/s12613-023-2618-5
|
[19] |
H.Y. Zhang, X. Zhang, C. Xie, W.B. Shi, and P. Yang, Composite nanoarchitectonics with TiO2 nanocrystals and superior thin Ti3C2T x nanosheets towards efficient NO removal, Environ. Res., 227(2023), art. No. 115793. doi: 10.1016/j.envres.2023.115793
|
[20] |
X. Zhang, X.R. Zhang, P. Yang, and S.P. Jiang, Pt clusters embedded in g-C3N4 nanosheets to form Z-scheme heterostructures with enhanced photochemical performance, Surf. Interfaces, 27(2021), art. No. 101450. doi: 10.1016/j.surfin.2021.101450
|
[21] |
X.F. Zeng, J.S. Wang, Y.N. Zhao, W.L. Zhang, and M.H. Wang, Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 503. doi: 10.1007/s12613-020-2193-y
|
[22] |
X. Zhang, P. Yang, and S.P. Jiang, The edge-epitaxial growth of yellow g-C3N4 on red g-C3N4 nanosheets with superior photocatalytic activities, Chem. Commun., 57(2021), No. 25, p. 3119. doi: 10.1039/D1CC00209K
|
[23] |
X. Zhang, P. Yang, and S.P. Jiang, Horizontally growth of WS2/WO3 heterostructures on crystalline g-C3N4 nanosheets towards enhanced photo/electrochemical performance, J. Nanostruct. Chem., 11(2021), No. 3, p. 367. doi: 10.1007/s40097-020-00373-7
|
[24] |
X. Zhang and P. Yang, g-C3N4 nanosheet nanoarchitectonics: H2 generation and CO2 reduction, ChemNanoMat, 9(2023), No. 6, art. No. e202300041. doi: 10.1002/cnma.202300041
|
[25] |
W. Li, X.S. Chu, F. Wang, et al., Enhanced cocatalyst-support interaction and promoted electron transfer of 3D porous g-C3N4/GO-M (Au, Pd, Pt) composite catalysts for hydrogen evolution, Appl. Catal. B, 288(2021), art. No. 120034.
|
[26] |
X.B. Zhang, H.J. Liu, Y.Q. Wang, et al., Hot-electron-induced CO2 hydrogenation on Au@AuRu/g-C3N4 plasmonic bimetal-semiconductor heterostructure, Chem. Eng. J., 443(2022), art. No. 136482. doi: 10.1016/j.cej.2022.136482
|
[27] |
C. Wan, L. Zhou, S.M. Xu, et al., Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid, Chem. Eng. J., 429(2022), art. No. 132388. doi: 10.1016/j.cej.2021.132388
|
[28] |
X. Yu, Y. Zhan, T.T. Fan, et al., Encapsulating Pd/g-C3N4 with acrylic acid to enhance the catalytic partial hydrogenation performance of isoprene, Carbon, 201(2023), p. 1174. doi: 10.1016/j.carbon.2022.10.039
|
[29] |
W.J. Yan, J.T. Zhang, A.J. Lü, S.L. Lu, Y.W. Zhong, and M.Y. Wang, Self-supporting and hierarchically porous Ni xFe–S/NiFe2O4 heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1120. doi: 10.1007/s12613-022-2443-2
|
[30] |
P. Li, L. Liu, W. An, et al., Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C–C coupling photothermal catalytic reduction of CO2 to ethanol, Appl. Catal. B, 266(2020), art. No. 118618. doi: 10.1016/j.apcatb.2020.118618
|
[31] |
X. Zhang, P. Yang, and S.P. Jiang, Pd nanoparticles assembled on Ni- and N-doped carbon nanotubes towards superior electrochemical activity, Int. J. Hydrogen Energy, 46(2021), No. 2, p. 2065. doi: 10.1016/j.ijhydene.2020.10.096
|
[32] |
T. Song, X. Zhang, C. Xie, and P. Yang, N-doped carbon nanotubes enhanced charge transport between Ni nanoparticles and g-C3N4 nanosheets for photocatalytic H2 generation and 4-nitrophenol removal, Carbon, 210(2023), art. No. 118052. doi: 10.1016/j.carbon.2023.118052
|
[33] |
H. Qiu, S.J. Liu, X.H. Ma, et al., Preparation of Y3+-doped Bi2MoO6 nanosheets for improved visible-light photocatalytic activity: Increased specific surface area, oxygen vacancy formation and efficient carrier separation, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1824. doi: 10.1007/s12613-023-2656-z
|
[34] |
X. Zhang, K. Matras-Postolek, and P. Yang, Heterojunction nanoarchitectonics of WO x/Au-g-C3N4 with efficient photogenerated carrier separation and transfer toward improved NO and benzene conversion, Mater. Today Adv., 17(2023), art. No. 100355. doi: 10.1016/j.mtadv.2023.100355
|
[35] |
X. Zhang, K. Matras-Postolek, P. Yang, and S. P. Jian, Cu cluster promoted charge separation and transfer in Z-scheme WO x/Cu-g-C3N4 heterojunctions towards efficient full solar-spectrum photocatalysis, J. Colloid Interface Sci., 636(2023), p. 646–656. doi: 10.1016/j.jcis.2023.01.052
|
[36] |
X. Zhang, X.R. Zhang, P. Yang, H.S. Chen, and S.P. Jiang, Black magnetic Cu-g-C3N4 nanosheets for efficiently photocatalytic H2 generation and CO2/benzene conversion, Chem. Eng. J., 450(2022), No. 2, art. No. 138030.
|
[37] |
X. Zhang, X.R. Zhang, P. Yang, and S.P. Jiang, Layered graphitic carbon nitride: Nano-heterostructures, photo/electro-chemical performance and trends, J. Nanostruct. Chem., 12(2022), No. 5, p. 669. doi: 10.1007/s40097-021-00442-5
|
[38] |
X. Zhang, P. Wang, P. Yang, and S.P. Jiang, Photo-chemical property evolution of superior thin g-C3N4 nanosheets with their crystallinity and Pt deposition, Int. J. Hydrogen Energy, 45(2020), No. 41, p. 21523. doi: 10.1016/j.ijhydene.2020.06.031
|
[39] |
A. Mishra, A. Mehta, S. Basu, N.P. Shetti, K.R. Reddy, and T.M. Aminabhavi, Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review, Carbon, 149(2019), p. 693. doi: 10.1016/j.carbon.2019.04.104
|
[40] |
Z.X. Cui, L. Zhang, Y.Q. Xue, et al., Effects of shape and particle size on the photocatalytic kinetics and mechanism of nano-CeO2, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2221. doi: 10.1007/s12613-021-2332-0
|
[41] |
R.C. Shen, J. Xie, H.D. Zhang, A.P. Zhang, X.B. Chen, and X. Li, Enhanced solar fuel H2 generation over g-C3N4 nanosheet photocatalysts by the synergetic effect of noble metal-free Co2P cocatalyst and the environmental phosphorylation strategy, ACS Sustainable Chem. Eng., 6(2018), No. 1, p. 816. doi: 10.1021/acssuschemeng.7b03169
|
[42] |
T. Zhang, W.Z. Wang, Z. Ma, L. Bai, Y. Yao, and D.Q. Xu, Bimetallic Pt–Ru covalently bonded on carbon nanotubes for efficient methanol oxidation, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1816
|
[43] |
X. Wang, Y. Xue, Z. Liang, J. Tian, X. Zhang, and X. Chen, Insights into the function of semi-metallic 1T’ phase ReS2 as cocatalyst decorated g-C3N4 nanotubes for enhanced photocatalytic hydrogen production activity, Mater. Today Adv., 15(2022), art. No. 100257. doi: 10.1016/j.mtadv.2022.100257
|
[44] |
P.Q. Chen, Y.X. Tai, H. Wu, Y.F. Gao, J.Y. Chen, and J.G. Cheng, Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1627. doi: 10.1007/s12613-021-2265-7
|
[45] |
Y.J. Xue, Y.H. Ji, X.Y. Wang, et al., Heterostructuring noble-metal-free 1T' phase MoS2 with g-C3N4 hollow nanocages to improve the photocatalytic H2 evolution activity, Green Energy Environ., 8(2023), No. 3, p. 864. doi: 10.1016/j.gee.2021.11.002
|
[46] |
X. Zhang and S.P. Jiang, Layered g-C3N4/TiO2 nanocomposites for efficient photocatalytic water splitting and CO2 reduction: A review, Mater. Today Energy, 23(2022), art. No. 100904. doi: 10.1016/j.mtener.2021.100904
|
[47] |
Y. Yuan, R.T. Guo, L.F. Hong, et al., A review of metal oxide-based Z-scheme heterojunction photocatalysts: Actualities and developments, Mater. Today Energy, 21(2021), art. No. 100829. doi: 10.1016/j.mtener.2021.100829
|
[48] |
D.O. Adekoya, M. Tahir, and N.A.S. Amin, g-C3N4/(Cu/TiO2) nanocomposite for enhanced photoreduction of CO2 to CH3OH and HCOOH under UV/visible light, J. CO2 Util., 18(2017), p. 261.
|
[49] |
J. Zhou, D.D. Nie, X.B. Jin, and W. Xiao, Controllable nitridation of Ta2O5 in molten salts for enhanced photocatalysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1703. doi: 10.1007/s12613-020-2050-z
|
[50] |
X.Y. Wang, S. Jan, Z.Y. Wang, and X.B. Jin, Solid Bi2O3-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO2, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 803. doi: 10.1007/s12613-023-2770-y
|
[51] |
X.N. Wang, R. Long, D. Liu, D. Yang, C.M. Wang, and Y.J. Xiong, Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays, Nano Energy, 24(2016), p. 87. doi: 10.1016/j.nanoen.2016.04.013
|
[52] |
W.J. Ong, L.K. Putri, L.L. Tan, S.P. Chai, and S.T. Yong, Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide, Appl. Catal. B, 180(2016), p. 530. doi: 10.1016/j.apcatb.2015.06.053
|
[53] |
X.S. Ji, B.G. Xu, H.Y. Zhang, X. Zhang, and P. Yang, NiS2 nanoparticles anchored on Co-carbon nanotubes for supercapacitor and overall water splitting, J. Alloys Compd., 968(2023), art. No. 172192. doi: 10.1016/j.jallcom.2023.172192
|
[54] |
S. Kumar, V.R. Battula, and K. Kailasam, Single molecular precursors for C xN y materials- blending of carbon and nitrogen beyond g-C3N4, Carbon, 183(2021), p. 332. doi: 10.1016/j.carbon.2021.07.025
|
[55] |
M. Inagaki, T. Tsumura, T. Kinumoto, and M. Toyoda, Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials, Carbon, 141(2019), p. 580. doi: 10.1016/j.carbon.2018.09.082
|
[56] |
S. Patnaik, D.P. Sahoo, and K. Parida, Recent advances in anion doped g-C3N4 photocatalysts: A review, Carbon, 172(2021), p. 682. doi: 10.1016/j.carbon.2020.10.073
|
[57] |
H.W. Su, H.B. Yin, R. Wang, et al., Atomic-level coordination structures meet graphitic carbon nitride (g-C3N4) for photocatalysis: Energy conversion and environmental remediation, Appl. Catal. B, 348(2024), art. No. 123683.
|
[58] |
P.X. Zhao, X.W. Feng, D.S. Huang, G.Y. Yang, and D. Astruc, Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles, Coord. Chem. Rev., 287(2015), p. 114. doi: 10.1016/j.ccr.2015.01.002
|
[59] |
S. Zhang, P.C. Gu, R. Ma, et al., Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review, Catal. Today, 335(2019), p. 65. doi: 10.1016/j.cattod.2018.09.013
|
[60] |
Y.S. Fu, T. Huang, B.Q. Jia, J.W. Zhu, and X. Wang, Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system, Appl. Catal. B, 202(2017), p. 430. doi: 10.1016/j.apcatb.2016.09.051
|
[61] |
I.X. Green, W. Tang, M. Neurock, and J.T.J. Yates, Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO₂ catalyst, Science, 333(2011), No. 6043, p. 736. doi: 10.1126/science.1207272
|
[62] |
M.M. Liu, R.Z. Zhang, and W. Chen, Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications, Chem. Rev., 114(2014), No. 10, p. 5117. doi: 10.1021/cr400523y
|
[63] |
H.G. Zhu, X. Yuan, Q.F. Yao, and J.P. Xie, Shining photocatalysis by gold-based nanomaterials, Nano Energy, 88(2021), art. No. 106306. doi: 10.1016/j.nanoen.2021.106306
|
[64] |
S.K. Ghosh and T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications, Chem. Rev., 107(2007), No. 11, p. 4797. doi: 10.1021/cr0680282
|
[65] |
P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, and R.D. Kornberg, Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution, Science, 318(2007), No. 5849, p. 430. doi: 10.1126/science.1148624
|
[66] |
X. Zhang, P. Yang, and S.P. Jiang, Ni clusters-derived 2D/2D layered WO x(MoS2)/Ni-g-C3N4 step-scheme heterojunctions with enhanced photo- and electro-catalytic performance, J. Power Sources, 510(2021), art. No. 230420. doi: 10.1016/j.jpowsour.2021.230420
|
[67] |
X.C. Wang, K. Maeda, A. Thomas, et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8(2009), No. 1, p. 76. doi: 10.1038/nmat2317
|
[68] |
X.H. Li, X.C. Wang, and M. Antonietti, Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step, Chem. Sci., 3(2012), No. 6, p. 2170. doi: 10.1039/c2sc20289a
|
[69] |
Z.Y. Zhang, C.L. Shao, P. Zou, et al. , In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol, Chem. Commun., 47(2011), No. 13, p. 3906. doi: 10.1039/c0cc05693f
|
[70] |
M.M. Zhang, L. Liu, C.L. Wu, G.Q. Fu, H.Y. Zhao, and B.L. He, Synthesis, characterization and application of well-defined environmentally responsive polymer brushes on the surface of colloid particles, Polymer, 48(2007), No. 7, p. 1989. doi: 10.1016/j.polymer.2007.01.069
|
[71] |
D. Jana, A. Dandapat, and G. De, Anisotropic gold nanoparticle doped mesoporous boehmite films and their use as reusable catalysts in electron transfer reactions, Langmuir, 26(2010), No. 14, p. 12177. doi: 10.1021/la100040m
|
[72] |
T. Huang, F. Meng, and L.M. Qi, Facile synthesis and one-dimensional assembly of cyclodextrin-capped gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering, J. Phys. Chem. C, 113(2009), No. 31, p. 13636. doi: 10.1021/jp903405y
|
[73] |
L. Shi, Z. Li, K. Marcus, et al., Integration of Au nanoparticles with a g-C3N4 based heterostructure: Switching charge transfer from type-II to Z-scheme for enhanced visible light photocatalysis, Chem. Commun., 54(2018), No. 30, p. 3747. doi: 10.1039/C8CC01370E
|
[74] |
Z. Chen, Z.M. Cui, C.Y. Cao, W.D. He, L. Jiang, and W.G. Song, Temperature-responsive smart nanoreactors: Poly(N-isopropylacrylamide)-coated Au@mesoporous-SiO2 hollow nanospheres, Langmuir, 28(2012), No. 37, p. 13452. doi: 10.1021/la3022535
|
[75] |
M.J. Liu, S. Wageh, A.A. Al-Ghamdi, et al., Quenching induced hierarchical 3D porous g-C3N4 with enhanced photocatalytic CO2 reduction activity, Chem. Commun., 55(2019), No. 93, p. 14023. doi: 10.1039/C9CC07647F
|
[76] |
M.I. Rahmah, R.S. Sabry, and W.J. Aziz, Preparation and photocatalytic property of Fe2O3/ZnO composites with superhydrophobicity, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1072. doi: 10.1007/s12613-020-2096-y
|
[77] |
T. Song, X. Zhang, and P. Yang, Bifunctional nitrogen-doped carbon dots in g-C3N4/WO x heterojunction for enhanced photocatalytic water-splitting performance, Langmuir, 37(2021), No. 14, p. 4236. doi: 10.1021/acs.langmuir.1c00210
|
[78] |
Y. Wei, X. Zhang, Z.G. Liu, H.S. Chen, and P. Yang, Site-selective modification of AgPt on multibranched Au nanostars for plasmon-enhanced hydrogen evolution and methanol oxidation reaction in visible to near-infrared region, J. Power Sources, 425(2019), p. 17. doi: 10.1016/j.jpowsour.2019.03.114
|
[79] |
Z. Guo, Y.B. Xie, J.D. Xiao, et al., Single-atom Mn–N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution, J. Am. Chem. Soc., 141(2019), No. 30, p. 12005. doi: 10.1021/jacs.9b04569
|
[80] |
X.F. Zhou, L.Z. Peng, L.M. Xu, et al., Pd(II), Pt(II) metallosupramolecular complexes as single-site Co-catalyst for photocatalytic H2 evolution, Chem. Eng. J., 474(2023), art. No. 145967. doi: 10.1016/j.cej.2023.145967
|
[81] |
J.Z. Liu, Y.H. Li, X.D. Zhou, H. Jiang, H.G. Yang, and C.Z. Li, Positively charged Pt-based cocatalysts: An orientation for achieving efficient photocatalytic water splitting, J. Mater. Chem. A, 8(2020), No. 1, p. 17. doi: 10.1039/C9TA10568A
|
[82] |
F.L. Yang, Q. Zhang, J.H. Zhang, L. Zhang, M.T. Cao, and W.L. Dai, Embedding Pt nanoparticles at the interface of CdS/NaNbO3 nanorods heterojunction with bridge design for superior Z-Scheme photocatalytic hydrogen evolution, Appl. Catal. B, 278(2020), art. No. 119290. doi: 10.1016/j.apcatb.2020.119290
|
[83] |
D. Preston, J.J. Sutton, K.C. Gordon, and J.D. Crowley, A nona-nuclear heterometallic Pd3Pt6 “donut” -shaped cage: Molecular recognition and photocatalysis, Angew. Chem. Int. Ed., 57(2018), No. 28, p. 8659. doi: 10.1002/anie.201804745
|
[84] |
S.F. An, G.H. Zhang, T.W. Wang, et al., High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes, ACS Nano, 12(2018), No. 9, p. 9441. doi: 10.1021/acsnano.8b04693
|
[85] |
A.Q. Wang, J. Li, and T. Zhang, Heterogeneous single-atom catalysis, Nat. Rev. Chem., 2(2018), No. 6, p. 65. doi: 10.1038/s41570-018-0010-1
|
[86] |
Z.X. Zeng, Y. Su, X. Quan, et al., Single-atom platinum confined by the interlayer nanospace of carbon nitride for efficient photocatalytic hydrogen evolution, Nano Energy, 69(2020), art. No. 104409. doi: 10.1016/j.nanoen.2019.104409
|
[87] |
T. Mahvelati-Shamsabadi, K.C. Bhamu, S.H. Lee, et al., Coordinatively unsaturated atomically dispersed Pt2+-N4 sites on hexagonal nanosheet structure of g-C3N4 for high-performance photocatalytic H2 production, Appl. Catal. B, 337(2023), art. No. 122959. doi: 10.1016/j.apcatb.2023.122959
|
[88] |
J. Xu, L.W. Zhang, R. Shi, and Y.F. Zhu, Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis, J. Mater. Chem. A, 1(2013), No. 46, p. 14766. doi: 10.1039/c3ta13188b
|
[89] |
Y.L. Zhao, Y.C. Wei, X.X. Wu, et al., Graphene-wrapped Pt/TiO2 photocatalysts with enhanced photogenerated charges separation and reactant adsorption for high selective photoreduction of CO2 to CH4, Appl. Catal. B, 226(2018), p. 360. doi: 10.1016/j.apcatb.2017.12.071
|
[90] |
J.J. Zhu, P. Xiao, H.L. Li, and S.A.C. Carabineiro, Graphitic carbon nitride: Synthesis, properties, and applications in catalysis, ACS Appl. Mater. Interfaces, 6(2014), No. 19, p. 16449. doi: 10.1021/am502925j
|
[91] |
H.J. Yin, S.L. Zhao, K. Zhao, et al., Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity, Nat. Commun., 6(2015), art. No. 6430. doi: 10.1038/ncomms7430
|
[92] |
H.M. Song, D.H. Anjum, R. Sougrat, M.N. Hedhili, and N.M. Khashab, Hollow Au@Pd and Au@Pt core–shell nanoparticles as electrocatalysts for ethanol oxidation reactions, J. Mater. Chem., 22(2012), No. 48, p. 25003. doi: 10.1039/c2jm35281h
|
[93] |
N. Sun, Y.X. Zhu, M.W. Li, et al., Thermal coupled photocatalysis over Pt/g-C3N4 for selectively reducing CO2 to CH4 via cooperation of the electronic metal-support interaction effect and the oxidation state of Pt, Appl. Catal. B, 298(2021), art. No. 120565. doi: 10.1016/j.apcatb.2021.120565
|
[94] |
K.C. Christoforidis, Z. Syrgiannis, V. La Parola, et al., Metal-free dual-phase full organic carbon nanotubes/g-C3N4 heteroarchitectures for photocatalytic hydrogen production, Nano Energy, 50(2018), p. 468. doi: 10.1016/j.nanoen.2018.05.070
|
[95] |
W.C. Wan, S.Q. Wei, J.G. Li, C.A. Triana, Y. Zhou, and G.R. Patzke, Transition metal electrocatalysts encapsulated into N-doped carbon nanotubes on reduced graphene oxide nanosheets: Efficient water splitting through synergistic effects, J. Mater. Chem. A, 7(2019), No. 25, p. 15145. doi: 10.1039/C9TA03213D
|
[96] |
A. Naseri, M. Samadi, A. Pourjavadi, A.Z. Moshfegh, and S. Ramakrishna, Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: Recent advances and future development directions, J. Mater. Chem. A, 5(2017), No. 45, p. 23406. doi: 10.1039/C7TA05131J
|
[97] |
J.C. Bian, L.F. Xi, C. Huang, K.M. Lange, R.Q. Zhang, and M. Shalom, Efficiency enhancement of carbon nitride photoelectrochemical cells via tailored monomers design, Adv. Energy Mater., 6(2016), No. 12, art. No. 1600263. doi: 10.1002/aenm.201600263
|
[98] |
C.Y. Zhai, M.J. Sun, L.X. Zeng, et al., Construction of Pt/graphitic C3N4/MoS2 heterostructures on photo-enhanced electrocatalytic oxidation of small organic molecules, Appl. Catal. B, 243(2019), p. 283. doi: 10.1016/j.apcatb.2018.10.047
|
[99] |
H.H. Ji, F. Chang, X.F. Hu, W. Qin, and J.W. Shen, Photocatalytic degradation of 2, 4, 6-trichlorophenol over g-C3N4 under visible light irradiation, Chem. Eng. J., 218(2013), p. 183. doi: 10.1016/j.cej.2012.12.033
|
[100] |
M.G. Hosseini and M.M. Momeni, Evaluation of the performance of platinum nanoparticle–titanium oxide nanotubes as a new refreshable electrode for formic acid electro-oxidation, Fuel Cells, 12(2012), No. 3, p. 406. doi: 10.1002/fuce.201100173
|
[101] |
M.A. Newton, C. Belver-Coldeira, A. Martínez-Arias, and M. Fernández-García, Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling, Nat. Mater., 6(2007), No. 7, p. 528. doi: 10.1038/nmat1924
|
[102] |
H.X. Wu, H.J. Li, Y.J. Zhai, X.L. Xu, and Y.D. Jin, Facile synthesis of free-standing Pd-based nanomembranes with enhanced catalytic performance for methanol/ethanol oxidation, Adv. Mater., 24(2012), No. 12, p. 1594. doi: 10.1002/adma.201104356
|
[103] |
Y.P. Shang, X.M. Jie, J. Zhou, P. Hu, S.J. Huang, and W.P. Su, Pd-catalyzed C–H olefination of (hetero)arenes by using saturated ketones as an olefin source, Angew. Chem. Int. Ed., 52(2013), No. 4, p. 1299. doi: 10.1002/anie.201208627
|
[104] |
B.J. Gallon, R.W. Kojima, R.B. Kaner, and P.L. Diaconescu, Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water, Angew. Chem. Int. Ed, 46(2007), No. 38, p. 7251. doi: 10.1002/anie.200701389
|
[105] |
J.Y. Hu, Q.W. Yang, L.F. Yang, et al., Confining noble metal (Pd, Au, Pt) nanoparticles in surfactant ionic liquids: Active non-mercury catalysts for hydrochlorination of acetylene, ACS Catal., 5(2015), No. 11, p. 6724. doi: 10.1021/acscatal.5b01690
|
[106] |
J. Zhao, Y.X. Yue, G.F. Sheng, et al., Supported ionic liquid-palladium catalyst for the highly effective hydrochlorination of acetylene, Chem. Eng. J., 360(2019), p. 38. doi: 10.1016/j.cej.2018.11.179
|
[107] |
S.A. Mitchenko, T.V. Krasnyakova, and I.V. Zhikharev, Effect of mechanicochemical treatment on the activity of K2PdCl4 in the heterogeneous catalytic hydrochlorination of acetylene, Theor. Exp. Chem., 46(2010), No. 1, p. 32. doi: 10.1007/s11237-010-9117-2
|
[108] |
P. Li, M.Z. Ding, L.M. He, et al., The activity and stability of PdCl2/C–N catalyst for acetylene hydrochlorination, Sci. China Chem., 61(2018), No. 4, p. 444. doi: 10.1007/s11426-017-9154-x
|
[109] |
G.M. Liu, Y. Huang, H.Q. Lv, et al., Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion, Appl. Catal. B, 284(2021), art. No. 119683. doi: 10.1016/j.apcatb.2020.119683
|
[110] |
Z.Z. Lin, L.H. Lin, and X.C. Wang, Thermal nitridation of triazine motifs to heptazine-based carbon nitride frameworks for use in visible light photocatalysis, Chin. J. Catal., 36(2015), No. 12, p. 2089. doi: 10.1016/S1872-2067(15)60995-0
|
[111] |
G.H. Dong, D.L. Jacobs, L. Zang, and C.Y. Wang, Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets, Appl. Catal. B, 218(2017), p. 515. doi: 10.1016/j.apcatb.2017.07.010
|
[112] |
L. Yang, X. Wang, D.P. Liu, G.M. Cui, B.L. Dou, and J. Wang, Efficient anchoring of nanoscale Pd on three-dimensional carbon hybrid as highly active and stable catalyst for electro-oxidation of formic acid, Appl. Catal. B, 263(2020), art. No. 118304. doi: 10.1016/j.apcatb.2019.118304
|
[113] |
Z. Yin, Y.J. Tian, P. Gao, et al., Photodegradation mechanism and genetic toxicity of bezafibrate by Pd/g-C3N4 catalysts under simulated solar light irradiation: The role of active species, Chem. Eng. J., 379(2020), art. No. 122294. doi: 10.1016/j.cej.2019.122294
|
[114] |
Z. Yin, M.G. Han, Z. Hu, et al., Peroxymonosulfate enhancing visible light photocatalytic degradation of bezafibrate by Pd/g-C3N4 catalysts: The role of sulfate radicals and hydroxyl radicals, Chem. Eng. J., 390(2020), art. No. 124532. doi: 10.1016/j.cej.2020.124532
|
[115] |
C.Y. Feng, L. Tang, Y.C. Deng, et al., A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2, Appl. Catal. B, 281(2021), art. No. 119539. doi: 10.1016/j.apcatb.2020.119539
|
[116] |
C.Z. Sun, H. Zhang, H. Liu, et al., Enhanced activity of visible-light photocatalytic H2 evolution of sulfur-doped g-C3N4 photocatalyst via nanoparticle metal Ni as cocatalyst, Appl. Catal. B, 235(2018), p. 66. doi: 10.1016/j.apcatb.2018.04.050
|
[117] |
K. Gu, X.T. Pan, W.W. Wang, et al. , In situ growth of Pd nanosheets on g-C3N4 nanosheets with well-contacted interface and enhanced catalytic performance for 4-nitrophenol reduction, Small, 14(2018), No. 33, art. No. 1801812. doi: 10.1002/smll.201801812
|
[118] |
G.L. Di, Z.L. Zhu, H. Zhang, Y.L. Qiu, D.Q. Yin, and J. Crittenden, Simultaneous sulfamethazine oxidation and bromate reduction by Pd-mediated Z-scheme Bi2MoO6/g-C3N4 photocatalysts: Synergetic mechanism and degradative pathway, Chem. Eng. J., 401(2020), art. No. 126061. doi: 10.1016/j.cej.2020.126061
|
[119] |
Z.X. Jiang, C.C. Jia, B. Wang, P. Yang, and G.G. Gao, Hexagonal g-C3N4 nanotubes with Pt decorated surface towards enhanced photo- and electro-chemistry performance, J. Alloys Compd., 826(2020), art. No. 154145. doi: 10.1016/j.jallcom.2020.154145
|
[120] |
Z.X. Jiang, X. Zhang, H.S. Chen, X. Hu, and P. Yang, Formation of g-C3N4 nanotubes towards superior photocatalysis performance, ChemCatChem, 11(2019), No. 18, p. 4558. doi: 10.1002/cctc.201901038
|
[121] |
Z.X. Jiang, X. Zhang, H.S. Chen, P. Yang, and S.P. Jiang, Fusiform-shaped g-C3N4 capsules with superior photocatalytic activity, Small, 16(2020), No. 42, art. No. 2003910. doi: 10.1002/smll.202003910
|
[122] |
X.D. Xiao, Y.T. Gao, L.P. Zhang, et al., A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis, Adv. Mater., 32(2020), No. 33, art. No. 2003082. doi: 10.1002/adma.202003082
|
[123] |
J.Q. Shan, T. Ling, K. Davey, Y. Zheng, and S.Z. Qiao, Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments, Adv. Mater., 31(2019), No. 17, art. No. 1900510. doi: 10.1002/adma.201900510
|
[124] |
A. Dutta and J.Y. Ouyang, Ternary NiAuPt nanoparticles on reduced graphene oxide as catalysts toward the electrochemical oxidation reaction of ethanol, ACS Catal., 5(2015), No. 2, p. 1371. doi: 10.1021/cs501365y
|
[125] |
C. Gai, T.X. Yang, H.J. Liu, Z.G. Liu, and W.T. Jiao, Hydrochar-supported bimetallic Ni–Cu nanocatalysts for sustainable H2 production, ACS Appl. Nano Mater., 2(2019), No. 11, p. 7279. doi: 10.1021/acsanm.9b01762
|
[126] |
Z.W. Huang, K.J. Barnett, J.P. Chada, et al., Hydrogenation of γ-butyrolactone to 1, 4-butanediol over CuCo/TiO2 bimetallic catalysts, ACS Catal., 7(2017), No. 12, p. 8429. doi: 10.1021/acscatal.7b03016
|
[127] |
Q.L. Yao, Z.H. Lu, Y.Q. Wang, X.S. Chen, and G. Feng, Synergetic catalysis of non-noble bimetallic Cu–Co nanoparticles embedded in SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane, J. Phys. Chem. C, 119(2015), No. 25, p. 14167. doi: 10.1021/acs.jpcc.5b02403
|
[128] |
S.B. Chen, Z. Yang, J.D. Chen, et al., Electron-rich interface of Cu–Co heterostructure nanoparticle as a cocatalyst for enhancing photocatalytic hydrogen evolution, Chem. Eng. J., 434(2022), art. No. 134673. doi: 10.1016/j.cej.2022.134673
|
[129] |
S. Hosseini, M. Ghiaci, S.A. Kulinich, et al., Au–Pd@g-C3N4 as an efficient photocatalyst for visible-light oxidation of benzene to phenol: Experimental and mechanistic study, J. Phys. Chem. C, 122(2018), No. 48, p. 27477. doi: 10.1021/acs.jpcc.8b08788
|
[130] |
C.C. Han, Y.Q. Gao, S. Liu, et al., Facile synthesis of AuPd/g-C3N4 nanocomposite: An effective strategy to enhance photocatalytic hydrogen evolution activity, Int. J. Hydrogen Energy, 42(2017), No. 36, p. 22765. doi: 10.1016/j.ijhydene.2017.07.154
|
[131] |
W.X. Zou, L.X. Xu, Y. Pu, et al., Advantageous interfacial effects of Ag/Pd/g-C3N4 for photocatalytic hydrogen evolution: Electronic structure and H2O dissociation, Chem. European J., 25(2019), No. 19, p. 5058. doi: 10.1002/chem.201806074
|
[132] |
T. Kashyap, S. Biswas, S. Ahmed, D. Kalita, P. Nath, and B. Choudhury, Plasmon activation versus plasmon quenching on the overall photocatalytic performance of Ag/Au bimetal decorated g-C3N4 nanosheets under selective photoexcitation: A mechanistic understanding with experiment and theory, Appl. Catal. B, 298(2021), art. No. 120614. doi: 10.1016/j.apcatb.2021.120614
|
[133] |
J. Zhao, S.C. Nguyen, R. Ye, et al., A comparison of photocatalytic activities of gold nanoparticles following plasmonic and interband excitation and a strategy for harnessing interband hot carriers for solution phase photocatalysis, ACS Cent. Sci., 3(2017), No. 5, p. 482. doi: 10.1021/acscentsci.7b00122
|
[134] |
W.N. Wang, W.J. An, B. Ramalingam, et al., Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals, J. Am. Chem. Soc., 134(2012), No. 27, p. 11276. doi: 10.1021/ja304075b
|
[135] |
H.H. Li, Y. Wu, C. Li, et al., Design of Pt/t-ZrO2/g-C3N4 efficient photocatalyst for the hydrogen evolution reaction, Appl. Catal. B, 251(2019), p. 305. doi: 10.1016/j.apcatb.2019.03.079
|
[136] |
K. Bhunia, M. Chandra, S. Khilari, and D. Pradhan, Bimetallic PtAu alloy nanoparticles-integrated g-C3N4 hybrid as an efficient photocatalyst for water-to-hydrogen conversion, ACS Appl. Mater. Interfaces, 11(2019), No. 1, p. 478. doi: 10.1021/acsami.8b12183
|
[137] |
W.J. Yang, J.H. Zhao, H. Tian, et al., Solar-driven carbon nanoreactor coupling gold and platinum nanocatalysts for alcohol oxidations, Small, 16(2020), No. 30, art. No. e2002236. doi: 10.1002/smll.202002236
|
[138] |
J.Y. Liu, X. Kong, L.R. Zheng, X. Guo, X.F. Liu, and J.L. Shui, Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction, ACS Nano, 14(2020), No. 1, p. 1093. doi: 10.1021/acsnano.9b08835
|
[139] |
S.Y. Guo, D.J. Cao, P.R. Xiao, G.L. Zhang, Q. Wang, and P. Cui, Activating Pd nanoparticles on oxygen-doped g-C3N4 for visible light-driven thermocatalytic oxidation of benzyl alcohol, Inorg. Chem., 61(2022), No. 39, p. 15654. doi: 10.1021/acs.inorgchem.2c02613
|
[140] |
Q. Liu, X.X. Zhao, X.H. Song, et al., Pd nanosheet-decorated 2D/2D g-C3N4/WO3·H2O S-scheme photocatalyst for high selective photoreduction of CO2 to CO, Inorg. Chem., 61(2022), No. 9, p. 4171. doi: 10.1021/acs.inorgchem.1c04034
|
[141] |
Y.J. Hao, S.J. Hao, Q.B. Li, X. Liu, H.B. Zou, and H.Q. Yang, Metal-nanoparticles-loaded ultrathin g-C3N4 nanosheets at liquid–liquid interfaces for enhanced biphasic catalysis, ACS Appl. Mater. Interfaces, 13(2021), No. 39, p. 47236. doi: 10.1021/acsami.1c13903
|