Cite this article as: |
Yuchao Yan, Zhu Jin, Hui Zhang, and Deren Yang, Recent progresses in thermal treatment of β-Ga2O3 single crystals and devices, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1659-1677. https://doi.org/10.1007/s12613-024-2926-4 |
Zhu Jin E-mail: msezhanghui@zju.edu.cn
Hui Zhang E-mail: jinzhuu@zju.edu.cn
[1] |
E. Farzana and J.S. Speck, Chapter 1: Introduction, [in] J.S. Speck and E. Farzana, eds., Ultrawide Bandgap β-Ga2O3 Semiconductor : Theory and Applications, AIP Publishing LLC, New York, 2023. p. 1-1.
|
[2] |
S.J. Pearton, J.C. Yang, P.H. Cary IV, et al., A review of Ga2O3 materials, processing, and devices, Appl. Phys. Rev., 5(2018), No. 1, art. No. 011301. doi: 10.1063/1.5006941
|
[3] |
Z. Galazka, β-Ga2O3 for wide-bandgap electronics and optoelectronics, Semicond. Sci. Technol., 33(2018), No. 11, art. No. 113001. doi: 10.1088/1361-6641/aadf78
|
[4] |
H.Y. Playford, A.C. Hannon, E.R. Barney, and R.I. Walton, Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction, Chemistry, 19(2013), No. 8, p. 2803. doi: 10.1002/chem.201203359
|
[5] |
R. Roy, V.G. Hill, and E.F. Osborn, Polymorphism of Ga2O3 and the system Ga2O3–H2O, J. Am. Chem. Soc., 74(1952), No. 3, p. 719. doi: 10.1021/ja01123a039
|
[6] |
Z. Galazka, A. Fiedler, A. Popp, et al., Bulk single crystals and physical properties of β-(Al xGa1− x)2O3 (x = 0–0.35) grown by the Czochralski method, J. Appl. Phys., 133(2023), No. 3, art. No. 035702. doi: 10.1063/5.0131285
|
[7] |
K. Hoshikawa, T. Kobayashi, E. Ohba, and T. Kobayashi, 50mm diameter Sn-doped (001) β-Ga2O3 crystal growth using the vertical Bridgeman technique in ambient air, J. Cryst. Growth, 546(2020), art. No. 125778. doi: 10.1016/j.jcrysgro.2020.125778
|
[8] |
W.X. Mu, Z.T. Jia, Y.R. Yin, et al., High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method, J. Alloys Compd., 714(2017), p. 453. doi: 10.1016/j.jallcom.2017.04.185
|
[9] |
V.L.A. Vijayan, D. Dhanabalan, K.V. Akshita, and S.M. Babu, Investigation of Sn incorporation in β-Ga2O3 single crystals and its effect on structural and optical properties, ECS J. Solid State Sci. Technol., 11(2022), No. 10, art. No. 104003. doi: 10.1149/2162-8777/ac9a72
|
[10] |
N. Xia, Y.Y. Liu, D. Wu, et al., β-Ga2O3 bulk single crystals grown by a casting method, J. Alloys Compd., 935(2023), art. No. 168036. doi: 10.1016/j.jallcom.2022.168036
|
[11] |
F. Orlandi, F. Mezzadri, G. Calestani, F. Boschi, and R. Fornari, Thermal expansion coefficients of β-Ga2O3 single crystals, Appl. Phys. Express, 8(2015), No. 11, art. No. 111101. doi: 10.7567/APEX.8.111101
|
[12] |
E.G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, Large-size β-Ga2O3 single crystals and wafers, J. Cryst. Growth, 270(2004), No. 3-4, p. 420. doi: 10.1016/j.jcrysgro.2004.06.027
|
[13] |
F. Shimura, Chapter 13 Intrinsic/internal gettering, [in] Semiconductors and Semimetals, Vol. 42, Elsevier, Amsterdam, 1994, p. 577.
|
[14] |
X.Y. Ma, L.M. Fu, D.X. Tian, and D.R. Yang, Rapid-thermal-processing-based intrinsic gettering for nitrogen-doped Czochralski silicon, J. Appl. Phys., 98(2005), No. 8, art. No. 084502. doi: 10.1063/1.2089167
|
[15] |
F. Shimura, Chapter 1 Introduction to oxygen in silicon, [in] Semiconductors and Semimetals, Vol. 42, Elsevier, Amsterdam, 1994, p. 1.
|
[16] |
H. Peelaers, J.L. Lyons, J.B. Varley, and C.G.V. de Walle, Deep acceptors and their diffusion in Ga2O3, APL Mater., 7(2019), No. 2, art. No. 022519. doi: 10.1063/1.5063807
|
[17] |
K.T. Liu, S.J. Chang, S.A. Wu, and Y. Horikoshi, Crystal polarity effects on magnesium implantation into GaN layer, Jpn. J. Appl. Phys., 49(2010), No. 7R, art. No. 071001. doi: 10.1143/JJAP.49.071001
|
[18] |
A. Uedono, R. Tanaka, S. Takashima, et al., Dopant activation process in Mg-implanted GaN studied by monoenergetic positron beam, Sci. Rep., 11(2021), No. 1, art. No. 20660. doi: 10.1038/s41598-021-00102-2
|
[19] |
S. Porowski, I. Grzegory, D. Kolesnikov, et al., Annealing of GaN under high pressure of nitrogen, J. Phys. Condens. Matter, 14(2002), No. 44, p. 11097. doi: 10.1088/0953-8984/14/44/433
|
[20] |
S.J. Pearton, Ion implantation in group III nitrides, [in] P. Bhattacharya, R. Fornari, and H. Kamimura, eds., Comprehensive Semiconductor Science and Technology, Vol. 4, Elsevier, Amsterdam, 2011, p. 25.
|
[21] |
A. Uedono, H. Sakurai, T. Narita, et al., Effects of ultra-high-pressure annealing on characteristics of vacancies in Mg-implanted GaN studied using a monoenergetic positron beam, Sci. Rep., 10(2020), No. 1, art. No. 17349. doi: 10.1038/s41598-020-74362-9
|
[22] |
B.N. Feigelson, T.J. Anderson, M. Abraham, et al., Multicycle rapid thermal annealing technique and its application for the electrical activation of Mg implanted in GaN, J. Cryst. Growth, 350(2012), No. 1, p. 21. doi: 10.1016/j.jcrysgro.2011.12.016
|
[23] |
K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts, Appl. Phys. Express, 6(2013), No. 8, art. No. 086502. doi: 10.7567/APEX.6.086502
|
[24] |
R. Sharma, M.E. Law, C. Fares, et al., The role of annealing ambient on diffusion of implanted Si in β-Ga2O3, AIP Adv., 9(2019), No. 8, art. No. 085111. doi: 10.1063/1.5115149
|
[25] |
B. Fu, G.Z. Jian, W.X. Mu, et al., Crystal growth and design of Sn-doped β-Ga2O3: Morphology, defect and property studies of cylindrical crystal by EFG, J. Alloys Compd., 896(2022), art. No. 162830. doi: 10.1016/j.jallcom.2021.162830
|
[26] |
M.D. McCluskey, Point defects in Ga2O3, J. Appl. Phys., 127(2020), No. 10, art. No. 101101. doi: 10.1063/1.5142195
|
[27] |
M.R. Lorenz, J.F. Woods, and R.J. Gambino, Some electrical properties of the semiconductor β-Ga2O3, J. Phys. Chem. Solids, 28(1967), No. 3, p. 403. doi: 10.1016/0022-3697(67)90305-8
|
[28] |
T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates, Appl. Phys. Express, 1(2008), No. 1, art. No. 011202. doi: 10.1143/APEX.1.011202
|
[29] |
T. Oshima, K. Kaminaga, A. Mukai, et al., Formation of semi-insulating layers on semiconducting β-Ga2O3 single crystals by thermal oxidation, Jpn. J. Appl. Phys., 52(2013), No. 5R, art. No. 051101. doi: 10.7567/JJAP.52.051101
|
[30] |
Z. Galazka, K. Irmscher, R. Uecker, et al., On the bulk β-Ga2O3 single crystals grown by the Czochralski method, J. Cryst. Growth, 404(2014), p. 184. doi: 10.1016/j.jcrysgro.2014.07.021
|
[31] |
A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth, Jpn. J. Appl. Phys., 55(2016), No. 12, art. No. 1202A2. doi: 10.7567/JJAP.55.1202A2
|
[32] |
Q.M. He, X.Z. Zhou, Q.Y. Li, et al., Selective high-resistance zones formed by oxygen annealing for GaO Schottky diode applications, IEEE Electron Device Lett., 43(2022), No. 11, p. 1933. doi: 10.1109/LED.2022.3205326
|
[33] |
X.Z. Zhou, Y.J. Ma, G.W. Xu, et al., Enhancement-mode β-Ga2O3 U-shaped gate trench vertical MOSFET realized by oxygen annealing, Appl. Phys. Lett., 121(2022), No. 22, art. No. 223501. doi: 10.1063/5.0130292
|
[34] |
M.J. Tadjer, N.A. Mahadik, J.A. Freitas, et al., Ga2O3 Schottky barrier and heterojunction diodes for power electronics applications, [in] Proc. of SPIE : Gallium Nitride Materials and Devices XIII, Vol. 10532, San Francisco, 2018, art. No. 1053212.
|
[35] |
M.J. Tadjer, J.A. Freitas Jr, J.C. Culbertson, et al., Structural and electronic properties of Si- and Sn-doped ( $ \bar{2}01 $) β-Ga2O3 annealed in nitrogen and oxygen atmospheres, J. Phys. D: Appl. Phys., 53(2020), No. 50, art. No. 504002. doi: 10.1088/1361-6463/abb432
|
[36] |
A. Langørgen, C. Zimmermann, Y.K. Frodason, et al., Influence of heat treatments in H2 and Ar on the E1 center in β-Ga2O3, J. Appl. Phys., 131(2022), No. 11, art. No. 115702. doi: 10.1063/5.0083861
|
[37] |
A.Y. Polyakov, A.A. Vasilev, I.V. Shchemerov, et al., Conducting surface layers formed by hydrogenation of O-implanted β-Ga2O3, J. Alloys Compd., 945(2023), art. No. 169258. doi: 10.1016/j.jallcom.2023.169258
|
[38] |
A. Luchechko, V. Vasyltsiv, L. Kostyk, O. Tsvetkova, and B. Pavlyk, Thermally stimulated luminescence and conductivity of β-Ga2O3 crystals, J. Nano- Electron. Phys., 11(2019), No. 3, art. No. 03035.
|
[39] |
Z.Y. Wu, Z.X. Jiang, C.C. Ma, et al., Energy-driven multi-step structural phase transition mechanism to achieve high-quality p-type nitrogen-doped β-Ga2O3 films, Mater. Today Phys., 17(2021), art. No. 100356. doi: 10.1016/j.mtphys.2021.100356
|
[40] |
J.P. McCandless, V. Protasenko, B.W. Morell, et al., Controlled Si doping of β-Ga2O3 by molecular beam epitaxy, Appl. Phys. Lett., 121(2022), No. 7, art. No. 072108 . doi: 10.1063/5.0101132
|
[41] |
O. Kurnosikov, L.P. Van, and J. Cousty, About anisotropy of atomic-scale height step on (0001) sapphire surface, Surf. Sci., 459(2000), No. 3, p. 256. doi: 10.1016/S0039-6028(00)00452-0
|
[42] |
R.R. Wang, D. Guo, G.X. Xie, and G.S. Pan, Atomic step formation on sapphire surface in ultra-precision manufacturing, Sci. Rep., 6(2016), art. No. 29964. doi: 10.1038/srep29964
|
[43] |
F. Cuccureddu, S. Murphy, I.V. Shvets, et al., Surface morphology of c-plane sapphire (α-alumina) produced by high temperature anneal, Surf. Sci., 604(2010), No. 15-16, p. 1294. doi: 10.1016/j.susc.2010.04.017
|
[44] |
T.C. Lovejoy, E.N. Yitamben, N. Shamir, et al., Surface morphology and electronic structure of bulk single crystal β-Ga2O3 (100), Appl. Phys. Lett., 94(2009), No. 8, art. No. 081906. doi: 10.1063/1.3086392
|
[45] |
V.M. Bermudez, The structure of low-index surfaces of β-Ga2O3, Chem. Phys., 323(2006), No. 2-3, p. 193. doi: 10.1016/j.chemphys.2005.08.051
|
[46] |
T.C. Lovejoy, R.Y. Chen, X. Zheng, et al., Band bending and surface defects in β-Ga2O3, Appl. Phys. Lett., 100(2012), No. 18, art. No. 181602. doi: 10.1063/1.4711014
|
[47] |
A. Navarro-Quezada, Z. Galazka, S. Alamé, D. Skuridina, P. Vogt, and N. Esser, Surface properties of annealed semiconducting β-Ga2O3 (100) single crystals for epitaxy, Appl. Surf. Sci., 349(2015), p. 368. doi: 10.1016/j.apsusc.2015.04.225
|
[48] |
S. Ohira, N. Suzuki, N. Arai, et al., Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing, Thin Solid Films, 516(2008), No. 17, p. 5763. doi: 10.1016/j.tsf.2007.10.083
|
[49] |
S. Ohira, N. Arai, T. Oshima, and S. Fujita, Atomically controlled surfaces with step and terrace of β-Ga2O3 single crystal substrates for thin film growth, Appl. Surf. Sci., 254(2008), No. 23, p. 7838. doi: 10.1016/j.apsusc.2008.02.184
|
[50] |
A. Pancotti, T.C. Back, W. Hamouda, et al., Surface relaxation and rumpling of Sn-doped β-Ga2O3 (010), Phys. Rev. B, 102(2020), No. 24, art. No. 245306. doi: 10.1103/PhysRevB.102.245306
|
[51] |
A. Okada, M. Nakatani, L. Chen, R.A. Ferreyra, and K. Kadono, Effect of annealing conditions on the optical properties and surface morphologies of ( $ \bar{2}01 $)-oriented β-Ga2O3 crystals, Appl. Surf. Sci., 574(2022), art. No. 151651. doi: 10.1016/j.apsusc.2021.151651
|
[52] |
B.Y. Feng, G.H. He, X.D. Zhang, et al., The effect of annealing on the Sn-doped ( $ \bar{2}01 $) β-Ga2O3 bulk, Mater. Sci. Semicond. Process., 147(2022), art. No. 106752. doi: 10.1016/j.mssp.2022.106752
|
[53] |
R. Schewski, K. Lion, A. Fiedler, et al., Step-flow growth in homoepitaxy of β-Ga2O3 (100)—The influence of the miscut direction and faceting, APL Mater., 7(2019), No. 2, art. No. 022515. doi: 10.1063/1.5054943
|
[54] |
S.B. Anooz, R. Grüneberg, C. Wouters, et al., Step flow growth of β-Ga2O3 thin films on vicinal (100) β-Ga2O3 substrates grown by MOVPE, Appl. Phys. Lett., 116(2020), No. 18, art. No. 182106. doi: 10.1063/5.0005403
|
[55] |
P. Mazzolini, A. Falkenstein, Z. Galazka, M. Martin, and O. Bierwagen, Offcut-related step-flow and growth rate enhancement during (100) β-Ga2O3 homoepitaxy by metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE), Appl. Phys. Lett., 117(2020), No. 22, art. No. 222105. doi: 10.1063/5.0031300
|
[56] |
A. Fiedler, R. Schewski, M. Baldini, et al., Influence of incoherent twin boundaries on the electrical properties of β-Ga2O3 layers homoepitaxially grown by metal-organic vapor phase epitaxy, J. Appl. Phys., 122(2017), No. 16, art. No. 165701. doi: 10.1063/1.4993748
|
[57] |
R. Togashi, K. Nomura, C. Eguchi, et al., Thermal stability of β-Ga2O3 in mixed flows of H2 and N2, Jpn. J. Appl. Phys., 54(2015), No. 4, art. No. 041102. doi: 10.7567/JJAP.54.041102
|
[58] |
H. Yamaguchi, S. Watanabe, Y. Yamaoka, K. Koshi, and A. Kuramata, Subsurface-damaged layer in (010)-oriented β-Ga2O3 substrates, Jpn. J. Appl. Phys., 59(2020), No. 12, art. No. 125503. doi: 10.35848/1347-4065/abcb1c
|
[59] |
T.T. Li, W. Guo, L. Ma, et al., Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire, Nat. Nanotechnol., 16(2021), p. 1201. doi: 10.1038/s41565-021-00963-8
|
[60] |
L. Liu, T.T. Li, L. Ma, et al., Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire, Nature, 605(2022), No. 7908, p. 69. doi: 10.1038/s41586-022-04523-5
|
[61] |
H. Itoh, S. Narui, Z. Zhang, and T. Ichonokawa, Structure of double-atomic-height steps in Si(001) vicinal surfaces observed by scanning tunneling microscopy, Surf. Sci. Lett., 277(1992), No. 3, p. L70.
|
[62] |
L. Cvitkovich, D. Waldhör, A.M. El-Sayed, M. Jech, C. Wilhelmer, and T. Grasser, Dynamic modeling of Si(100) thermal oxidation: Oxidation mechanisms and realistic amorphous interface generation, Appl. Surf. Sci., 610(2023), art. No. 155378. doi: 10.1016/j.apsusc.2022.155378
|
[63] |
C.P. Wan, H.Y. Xu, J.H. Xia, and J.P. Ao, Ultrahigh-temperature oxidation of 4H–SiC (0001) and gate oxide reliability dependence on oxidation temperature, J. Cryst. Growth, 530(2020), art. No. 125250. doi: 10.1016/j.jcrysgro.2019.125250
|
[64] |
W. Chen, T. Jiao, Z.M. Li, et al., Preparation of β-Ga2O3 nanostructured films by thermal oxidation of GaAs substrate, Ceram. Int., 48(2022), No. 4, p. 5698. doi: 10.1016/j.ceramint.2021.11.115
|
[65] |
L. Leontie, V. Sprincean, D. Untila, et al., Synthesis and optical properties of Ga2O3 nanowires grown on GaS substrate, Thin Solid Films, 689(2019), art. No. 137502. doi: 10.1016/j.tsf.2019.137502
|
[66] |
Y.R. Han, Y.F. Wang, S.H. Fu, et al., Ultrahigh detectivity broad spectrum UV photodetector with rapid response speed based on p-β Ga2O3/n-GaN heterojunction fabricated by a reversed substitution doping method, Small, 19(2023), No. 16, art. No. 2206664. doi: 10.1002/smll.202206664
|
[67] |
E. Filippo, M. Siciliano, A. Genga, G. Micocci, A. Tepore, and T. Siciliano, Single crystalline β-Ga2O3 nanowires synthesized by thermal oxidation of GaSe layer, Mater. Res. Bull., 48(2013), No. 5, p. 1741. doi: 10.1016/j.materresbull.2012.08.083
|
[68] |
E.D. Readinger, S.D. Wolter, D.L. Waltemyer, et al., Wet thermal oxidation of GaN, J. Electron. Mater., 28(1999), No. 3, p. 257. doi: 10.1007/s11664-999-0024-z
|
[69] |
J.J. Wang, X.Q. Ji, Z.Y. Yan, et al., High sensitivity Ga2O3 ultraviolet photodetector by one-step thermal oxidation of p-GaN films, Mater. Sci. Semicond. Process., 159(2023), art. No. 107372. doi: 10.1016/j.mssp.2023.107372
|
[70] |
T. Yamada, J. Ito, R. Asahara, et al., Comprehensive study on initial thermal oxidation of GaN(0001) surface and subsequent oxide growth in dry oxygen ambient, J. Appl. Phys., 121(2017), No. 3, art. No. 035303. doi: 10.1063/1.4974458
|
[71] |
E.G. Víllora, K. Shimamura, K. Aoki, and N. Ichinose, Reconstruction of the β-Ga2O3 (100) cleavage surface to hexagonal GaN after NH3 nitridation, J. Cryst. Growth, 270(2004), No. 3-4, p. 462. doi: 10.1016/j.jcrysgro.2004.06.045
|
[72] |
H.J. Lee, T.I. Shin, and D.H. Yoon, Influence of NH3 gas for GaN epilayer on β-Ga2O3 substrate by nitridation, Surf. Coat. Technol., 202(2008), No. 22-23, p. 5497. doi: 10.1016/j.surfcoat.2008.06.103
|
[73] |
F.W. Mu, K. Iguchi, H. Nakazawa, et al., A comparison study: Direct wafer bonding of SiC–SiC by standard surface-activated bonding and modified surface-activated bonding with Si-containing Ar ion beam, Appl. Phys. Express, 9(2016), No. 8, art. No. 081302. doi: 10.7567/APEX.9.081302
|
[74] |
W.H. Xu, T.G. You, F.W. Mu, et al., Thermodynamics of ion-cutting of β-Ga2O3 and wafer-scale heterogeneous integration of a β-Ga2O3 thin film onto a highly thermal conductive SiC substrate, ACS Appl. Electron. Mater., 4(2022), No. 1, p. 494. doi: 10.1021/acsaelm.1c01102
|
[75] |
Z. Jian, C.J. Clymore, K. Sun, U. Mishra, and E. Ahmadi, Demonstration of atmospheric plasma activated direct bonding of N-polar GaN and β-Ga2O3 (001) substrates, Appl. Phys. Lett., 120(2022), No. 14, art. No. 142101. doi: 10.1063/5.0083556
|
[76] |
M. H. Wong, High breakdown voltage β-Ga2O3 Schottky diodes, [in] J.S. Speck and E. Farzana, eds., Ultrawide Bandgap β-Ga2O3 Semiconductor : Theory and Applications, AIP Publishing LLC, New York, 2023. p. 8-1.
|
[77] |
C. Lu, X.Q. Ji, Z. Liu, et al., A review of metal–semiconductor contacts for β-Ga2O3, J. Phys. D: Appl. Phys., 55(2022), No. 46, art. No. 463002. doi: 10.1088/1361-6463/ac8818
|
[78] |
Z. Liu, J. Yu, P.G. Li, et al., Band alignments of β-Ga2O3 with MgO, Al2O3 and MgAl2O4 measured by X-ray photoelectron spectroscopy, J. Phys. D: Appl. Phys., 52(2019), No. 29, art. No. 295104. doi: 10.1088/1361-6463/ab18e0
|
[79] |
Z.X. Qin, Z.Z. Chen, Y.Z. Tong, et al., Study of Ti/Au, Ti/Al/Au, and Ti/Al/Ni/Au ohmic contacts to n-GaN, Appl. Phys. A, 78(2004), No. 5, p. 729. doi: 10.1007/s00339-002-1989-0
|
[80] |
Y. Yao, R.F. Davis, and L.M. Porter, Investigation of different metals as ohmic contacts to β-Ga2O3: Comparison and analysis of electrical behavior, morphology, and other physical properties, J. Electron. Mater., 46(2017), No. 4, p. 2053. doi: 10.1007/s11664-016-5121-1
|
[81] |
M.H. Lee and R.L. Peterson, Interfacial reactions of titanium/gold ohmic contacts with Sn-doped β-Ga2O3, APL Mater., 7(2019), No. 2, art. No. 022524. doi: 10.1063/1.5054624
|
[82] |
M.H. Lee and R.L. Peterson, Annealing induced interfacial evolution of titanium/gold metallization on unintentionally doped β-Ga2O3, ECS J. Solid State Sci. Technol., 8(2019), No. 7, p. Q3176. doi: 10.1149/2.0321907jss
|
[83] |
Y. Kim, M.K. Kim, K.H. Baik, and S. Jang, Low-resistance Ti/Au ohmic contact on (001) plane Ga2O3 crystal, ECS J. Solid State Sci. Technol., 11(2022), No. 4, art. No. 045003. doi: 10.1149/2162-8777/ac6118
|
[84] |
L.A.M. Lyle, Critical review of ohmic and Schottky contacts to β-Ga2O3, J. Vac. Sci. Technol. A, 40(2022), No. 6, art. No. 060802. doi: 10.1116/6.0002144
|
[85] |
W.A. Callahan, E. Supple, D. Ginley, et al., Ultrathin stable Ohmic contacts for high-temperature operation of β-Ga2O3 devices, J. Vac. Sci. Technol. A, 41(2023), No. 4, art. No. 043211. doi: 10.1116/6.0002645
|
[86] |
J.J. Shi, X.C. Xia, H.W. Liang, et al., Low resistivity ohmic contacts on lightly doped n-type β-Ga2O3 using Mg/Au, J. Mater. Sci. Mater. Electron., 30(2019), No. 4, p. 3860. doi: 10.1007/s10854-019-00669-7
|
[87] |
P.H. Carey IV, J.C. Yang, F. Ren, et al., Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au, AIP Adv., 7(2017), No. 9, art. No. 095313. doi: 10.1063/1.4996172
|
[88] |
P.H. Carey IV, J.C. Yang, F. Ren, et al., Improvement of ohmic contacts on Ga2O3 through use of ITO-interlayers, J. Vac. Sci. Technol. B, 35(2017), No. 6, art. No. 061201. doi: 10.1116/1.4995816
|
[89] |
K.D. Chabak, D.E. Walker, A.J. Green, et al., Sub-micron gallium oxide radio frequency field-effect transistors, [in] 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP ), Ann Arbor, 2018, p. 1.
|
[90] |
M. Higashiwaki, K. Sasaki, T. Kamimura, et al., Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics, Appl. Phys. Lett., 103(2013), No. 12, art. No. 123511. doi: 10.1063/1.4821858
|
[91] |
X.Z. Zhou, G.W. Xu, and S.B. Long, A large-area multi-finger β-Ga2O3 MOSFET and its self-heating effect, J. Semicond., 44(2023), No. 7, art. No. 072804. doi: 10.1088/1674-4926/44/7/072804
|
[92] |
H.N. Masten, J.D. Phillips, and R.L. Peterson, Effects of high temperature annealing on the atomic layer deposited HfO2/β-Ga2O3 (010) interface, J. Appl. Phys., 131(2022), No. 3, art. No. 035106. doi: 10.1063/5.0070105
|
[93] |
A. Jayawardena, R.P. Ramamurthy, A.C. Ahyi, D. Morisette, and S. Dhar, Interface trapping in ( $ \bar{2}01 $) β-Ga2O3 MOS capacitors with deposited dielectrics, Appl. Phys. Lett., 112(2018), No. 19, art. No. 192108. doi: 10.1063/1.5019270
|
[94] |
E. Farzana, F. Alema, W.Y. Ho, et al., Vertical β-Ga2O3 field plate Schottky barrier diode from metal-organic chemical vapor deposition, Appl. Phys. Lett., 118(2021), No. 16, art. No. 162109. doi: 10.1063/5.0047821
|
[95] |
J.H. Choi, C.H. Cho, and H.Y. Cha, Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate, Results Phys., 9(2018), p. 1170. doi: 10.1016/j.rinp.2018.04.042
|
[96] |
H. Okumura and T. Tanaka, Dry and wet etching for β-Ga2O3 Schottky barrier diodes with mesa termination, Jpn. J. Appl. Phys., 58(2019), No. 12, art. No. 120902. doi: 10.7567/1347-4065/ab4f90
|
[97] |
F. Zhou, H.H. Gong, W.Z. Xu, et al., 1.95-kV beveled-mesa NiO/β-Ga2O3 heterojunction diode with 98.5% conversion efficiency and over million-times overvoltage ruggedness, IEEE Trans. Power Electron., 37(2022), No. 2, p. 1223. doi: 10.1109/TPEL.2021.3108780
|
[98] |
C.H. Lin, Y. Yuda, M.H. Wong, et al., Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation, IEEE Electron Device Lett., 40(2019), No. 9, p. 1487. doi: 10.1109/LED.2019.2927790
|
[99] |
X.Y. Xia, M.H. Xian, C. Fares, et al., Nitrogen ion-implanted resistive regions for edge termination of vertical Ga2O3 rectifiers, J. Vac. Sci. Technol. A, 39(2021), No. 6, art. No. 063405. doi: 10.1116/6.0001347
|
[100] |
M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V, IEEE Electron Device Lett., 37(2016), No. 2, p. 212. doi: 10.1109/LED.2015.2512279
|
[101] |
D.I. Shahin, M.J. Tadjer, V.D. Wheeler, et al., Electrical characterization of ALD HfO2 high-k dielectrics on ( $ \bar{2}01 $) β-Ga2O3, Appl. Phys. Lett., 112(2018), No. 4, art. No. 042107. doi: 10.1063/1.5006276
|
[102] |
C.V. Prasad and Y.S. Rim, Review on interface engineering of low leakage current and on-resistance for high-efficiency Ga2O3-based power devices, Mater. Today Phys., 27(2022), art. No. 100777. doi: 10.1016/j.mtphys.2022.100777
|
[103] |
K. Kita, E. Suzuki, and Q. Mao, Study on the effects of post-deposition annealing on SiO2/β-Ga2O3 MOS characteristics, ECS Trans., 92(2019), No. 1, p. 59. doi: 10.1149/09201.0059ecst
|
[104] |
K. Zeng and U. Singisetti, Temperature dependent quasi-static capacitance-voltage characterization of SiO2/β-Ga2O3 interface on different crystal orientations, Appl. Phys. Lett., 111(2017), No. 12, art. No. 122108. doi: 10.1063/1.4991400
|
[105] |
C.J. Klingshirn, A. Jayawardena, S. Dhar, et al., Analytical electron microscopy of ( $ \bar{2}01 $) β-Ga2O3/SiO2 and ( $ \bar{2}01 $) β-Ga2O3/Al2O3 interface structures in MOS capacitors, J. Appl. Phys., 129(2021), No. 19, art. No. 195705. doi: 10.1063/5.0041266
|
[106] |
A.H. Carim and A. Bhattacharyya, Si/SiO2 interface roughness: Structural observations and electrical consequences, Appl. Phys. Lett., 46(1985), No. 9, p. 872. doi: 10.1063/1.95870
|
[107] |
K. Tetzner, M. Klupsch, A. Popp, et al., Enhancement-mode vertical (100) β-Ga2O3 FinFETs with an average breakdown strength of 2.7 MV cm−1, Jpn. J. Appl. Phys., 62(2023), art. No. SF1010. doi: 10.35848/1347-4065/acbebc
|
[108] |
M.H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain, Appl. Phys. Express, 10(2017), No. 4, art. No. 041101. doi: 10.7567/APEX.10.041101
|
[109] |
M.T. Bohr, R.S. Chau, T. Ghani, and K. Mistry, The high-k solution, IEEE Spectr., 44(2007), No. 10, p. 29. doi: 10.1109/MSPEC.2007.4337663
|
[110] |
V.D. Wheeler, D.I. Shahin, M.J. Tadjer, and C.R. Eddy Jr, Band alignments of atomic layer deposited ZrO2 and HfO2 high-k dielectrics with ( $ \bar{2}01 $) β-Ga2O3, ECS J. Solid State Sci. Technol., 6(2017), No. 2, p. Q3052. doi: 10.1149/2.0131702jss
|
[111] |
Y.C. Chang, H.C. Chiu, Y.J. Lee, et al., Structural and electrical characteristics of atomic layer deposited high κ HfO2 on GaN, Appl. Phys. Lett., 90(2007), No. 23, art. No. 232904. doi: 10.1063/1.2746057
|
[112] |
M. Labed, J.Y. Min, J.Y. Hong, et al., Interface engineering of β-Ga2O3 MOS-type Schottky barrier diode using an ultrathin HfO2 interlayer, Surf. Interfaces, 33(2022), art. No. 102267. doi: 10.1016/j.surfin.2022.102267
|
[113] |
R. Hawkins, X.L. Wang, N. Moumen, R.M. Wallace, and C.D. Young, Impact of process anneals on high-k/β-Ga2O3 interfaces and capacitance, J. Vac. Sci. Technol. A, 41(2023), No. 2, art. No. 023203. doi: 10.1116/6.0002264
|
[114] |
M.E. Ingebrigtsen, A.Y. Kuznetsov, B.G. Svensson, et al., Impact of proton irradiation on conductivity and deep level defects in β-Ga2O3, APL Mater., 7(2019), No. 2, art. No. 022510. doi: 10.1063/1.5054826
|
[115] |
T.R. Li, T. Tu, Y.W. Sun, et al., A native oxide high-κ gate dielectric for two-dimensional electronics, Nat. Electron., 3(2020), No. 8, p. 473. doi: 10.1038/s41928-020-0444-6
|
[116] |
Z.C. Lu, K. Tuokedaerhan, H.T. Cai, H.J. Du, and R.J. Zhang, Effect of annealing temperature on the structure and properties of La2O3 high-K gate dielectric films prepared by the sol–gel method, Coatings, 13(2023), No. 6, art. No. 1085. doi: 10.3390/coatings13061085
|
[117] |
N. Manikanthababu, H. Sheoran, P. Siddham, and R. Singh, Review of radiation-induced effects on β-Ga2O3 materials and devices, Crystals, 12(2022), No. 7, art. No. 1009. doi: 10.3390/cryst12071009
|
[118] |
A. Nikolskaya, E. Okulich, D. Korolev, et al., Ion implantation in β-Ga2O3: Physics and technology, J. Vac. Sci. Technol. A, 39(2021), No. 3, art. No. 030802. doi: 10.1116/6.0000928
|
[119] |
K.A. Olive, Review of particle physics, Chin. Phys. C, 38(2014), No. 9, art. No. 090001. doi: 10.1088/1674-1137/38/9/090001
|
[120] |
G. Yang, S. Jang, F. Ren, S.J. Pearton, and J. Kim, Influence of high-energy proton irradiation on β-Ga2O3 nanobelt field-effect transistors, ACS Appl. Mater. Interfaces, 9(2017), No. 46, p. 40471. doi: 10.1021/acsami.7b13881
|
[121] |
J.C. Yang, Z.T. Chen, F. Ren, et al., 10 MeV proton damage in β-Ga2O3 Schottky rectifiers, J. Vac. Sci. Technol. B, 36(2018), No. 1, art. No. 011206. doi: 10.1116/1.5013155
|
[122] |
L.N. Cojocaru, Defect-annealing in neutron-damaged β-Ga2O3, Radiat. Eff., 21(1974), No. 3, p. 157. doi: 10.1080/00337577408241456
|
[123] |
H.T. Gao, S. Muralidharan, M.R. Karim, et al., Neutron irradiation and forming gas anneal impact on β-Ga2O3 deep level defects, J. Phys. D: Appl. Phys., 53(2020), No. 46, art. No. 465102. doi: 10.1088/1361-6463/aba92f
|
[124] |
J.Y. Liu, Z. Han, L. Ren, et al., Oxygen vacancies and local amorphization introduced by high fluence neutron irradiation in β-Ga2O3 power diodes, Appl. Phys. Lett., 123(2023), No. 11, art. No. 112106. doi: 10.1063/5.0161934
|
[125] |
M. Rudan, Thermal diffusion—Ion implantation, [in] Physics of Semiconductor Devices, Springer, Cham, 2018, p. 673.
|
[126] |
J.C. Zolper, Ion implantation in group III-nitride semiconductors: A tool for doping and defect studies, J. Cryst. Growth, 178(1997), No. 1-2, p. 157. doi: 10.1016/S0022-0248(97)00076-6
|
[127] |
M.J. Tadjer, C. Fares, N.A. Mahadik, et al., Damage recovery and dopant diffusion in Si and Sn ion implanted β-Ga2O3, ECS J. Solid State Sci. Technol., 8(2019), No. 7, p. Q3133. doi: 10.1149/2.0271907jss
|
[128] |
J.A. Spencer, M.J. Tadjer, A.G. Jacobs, et al., Activation of implanted Si, Ge, and Sn donors in high-resistivity halide vapor phase epitaxial β-Ga2O3: N with high mobility, Appl. Phys. Lett., 121(2022), No. 19, art. No. 192102. doi: 10.1063/5.0120494
|
[129] |
M.H. Wong, C.H. Lin, A. Kuramata, et al., Acceptor doping of β-Ga2O3 by Mg and N ion implantations, Appl. Phys. Lett., 113(2018), No. 10, art. No. 102103. doi: 10.1063/1.5050040
|
[130] |
E.A. Anber, D. Foley, A.C. Lang, et al., Structural transition and recovery of Ge implanted β-Ga2O3, Appl. Phys. Lett., 117(2020), No. 15, art. No. 152101. doi: 10.1063/5.0022170
|
[131] |
T. Yoo, X.Y. Xia, F. Ren, et al., Atomic-scale characterization of structural damage and recovery in Sn ion-implanted β-Ga2O3, Appl. Phys. Lett., 121(2022), No. 7, art. No. 072111. doi: 10.1063/5.0099915
|
[132] |
Y.K. Frodason, P.P. Krzyzaniak, L. Vines, J.B. Varley, C.G.V. de Walle, and K.M.H. Johansen, Diffusion of Sn donors in β-Ga2O3, APL Mater., 11(2023), No. 4, art. No. 041121. doi: 10.1063/5.0142671
|
[133] |
H.J. Ghadi, J.F. McGlone, E. Farzana, A.R. Arehart, and S.A. Ringel, Radiation effects on β-Ga2O3 materials and devices, [in] J.S. Speck and E. Farzana, eds., Ultrawide Bandgap β-Ga2O3 Semiconductor : Theory and Applications, AIP Publishing LLC, New York, 2023, p. 12-1.
|
[134] |
N. Manikanthababu, B.R. Tak, K. Prajna, et al., Swift heavy ion irradiation-induced modifications in the electrical and surface properties of β-Ga2O3, Appl. Phys. Lett., 117(2020), No. 14, art. No. 142105. doi: 10.1063/5.0024944
|
[135] |
N. Manikanthababu, B.R. Tak, K. Prajna, et al., Electronic excitation-induced tunneling and charge-trapping explored by in situ electrical characterization in Ni/HfO2/β-Ga2O3 metal-oxide–semiconductor capacitors, Mater. Sci. Eng. B, 281(2022), art. No. 115716. doi: 10.1016/j.mseb.2022.115716
|
[136] |
J.C. Yang, F. Ren, S.J. Pearton, G. Yang, J. Kim, and A. Kuramata, 1.5 MeV electron irradiation damage in β-Ga2O3 vertical rectifiers, J. Vac. Sci. Technol. B, 35(2017), No. 3, art. No. 031208. doi: 10.1116/1.4983377
|
[137] |
J. Lee, E. Flitsiyan, L. Chernyak, et al., Effect of 1.5 MeV electron irradiation on β-Ga2O3 carrier lifetime and diffusion length, Appl. Phys. Lett., 112(2018), No. 8, art. No. 082104. doi: 10.1063/1.5011971
|
[138] |
S. Modak, L. Chernyak, S. Khodorov, et al., Impact of electron injection and temperature on minority carrier transport in alpha-irradiated β-Ga2O3 Schottky rectifiers, ECS J. Solid State Sci. Technol., 8(2019), No. 7, p. Q3050. doi: 10.1149/2.0101907jss
|
[139] |
J.C. Yang, G.J. Koller, C. Fares, et al., 60Co gamma ray damage in homoepitaxial β-Ga2O3 Schottky rectifiers, ECS J. Solid State Sci. Technol., 8(2019), No. 7, p. Q3041. doi: 10.1149/2.0091907jss
|
[140] |
M.A. Bhuiyan, H. Zhou, R. Jiang, et al., Charge trapping in Al2O3/β-Ga2O3-based MOS capacitors, IEEE Electron Device Lett., 39(2018), No. 7, p. 1022. doi: 10.1109/LED.2018.2841899
|