Tongyue Li, Ziliang Xie, Wenjiao Zhou, Huan Tong, Dawen Yang, Anjia Zhang, Yuan Wu, and Xiping Song, Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 127-135. https://doi.org/10.1007/s12613-024-2933-5
Cite this article as:
Tongyue Li, Ziliang Xie, Wenjiao Zhou, Huan Tong, Dawen Yang, Anjia Zhang, Yuan Wu, and Xiping Song, Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 127-135. https://doi.org/10.1007/s12613-024-2933-5
Research Article

Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy

+ Author Affiliations
  • Corresponding authors:

    Yuan Wu    E-mail: wuyuan@ustb.edu.cn

    Xiping Song    E-mail: xpsong@skl.ustb.edu.cn

  • Received: 22 January 2024Revised: 19 April 2024Accepted: 14 May 2024Available online: 15 May 2024
  • This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy (HEA), YGdTbDyHo. Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains, with the alloy elements distributed homogeneously. Upon hydrogen absorption, the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed (HCP) structure to a high-entropy hydride with an faced-centered-cubic (FCC) structure without any secondary phase precipitated. The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M (hydrogen atom/metal atom) at 723 K, with an enthalpy change (ΔH) of −141.09 kJ·mol−1 and an entropy change (ΔS) of −119.14 J·mol−1·K−1. The kinetic mechanism of hydrogen absorption was hydride nucleation and growth, with an apparent activation energy (Ea) of 20.90 kJ·mol−1. Without any activation, the YGdTbDyHo alloy could absorb hydrogen quickly (180 s at 923 K) with nearly no incubation period observed. The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices. These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio, which can be used in the deuterium storage field.
  • loading
  • [1]
    J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
    [2]
    Y. Zhang and Y.J. Zhou, Solid solution formation criteria for high entropy alloys, Mater. Sci. Forum, 561-565(2007), p. 1337. doi: 10.4028/www.scientific.net/MSF.561-565.1337
    [3]
    C.W. Tsai, M.H. Tsai, J.W. Yeh, and C.C. Yang, Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy, J. Alloys Compd., 490(2010), No. 1-2, p. 160. doi: 10.1016/j.jallcom.2009.10.088
    [4]
    S.G. Ma and Y. Zhang, Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy, Mater. Sci. Eng. A, 532(2012), p. 480. doi: 10.1016/j.msea.2011.10.110
    [5]
    Y.Y. Chen, U.T. Hong, H.C. Shih, J.W. Yeh, and T. Duval, Electrochemical kinetics of the high entropy alloys in aqueous environments—A comparison with type 304 stainless steel, Corros. Sci., 47(2005), No. 11, p. 2679. doi: 10.1016/j.corsci.2004.09.026
    [6]
    T. Zhong, H.Y. Zhang, M.C. Song, et al., FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2270. doi: 10.1007/s12613-023-2669-7
    [7]
    L. Wang, L.T. Zhang, X. Lu, et al., Surprising cocktail effect in high entropy alloys on catalyzing magnesium hydride for solid-state hydrogen storage, Chem. Eng. J., 465(2023), art. No. 142766. doi: 10.1016/j.cej.2023.142766
    [8]
    S. Li, F.Y. Wu, Y. Zhang, et al., Enhanced hydrogen storage performance of magnesium hydride catalyzed by medium-entropy alloy CrCoNi nanosheets, Int. J. Hydrogen Energy, 50(2024), p. 1015. doi: 10.1016/j.ijhydene.2023.08.308
    [9]
    F. Marques, M. Balcerzak, F. Winkelmann, G. Zepon, and M. Felderhoff, Review and outlook on high-entropy alloys for hydrogen storage, Energy Environ. Sci., 14(2021), No. 10, p. 5191. doi: 10.1039/D1EE01543E
    [10]
    M. Sahlberg, D. Karlsson, C. Zlotea, and U. Jansson, Superior hydrogen storage in high entropy alloys, Sci. Rep., 6(2016), art. No. 36770. doi: 10.1038/srep36770
    [11]
    C. Zlotea, M.A. Sow, G. Ek, et al., Hydrogen sorption in TiZrNbHfTa high entropy alloy, J. Alloys Compd., 775(2019), p. 667. doi: 10.1016/j.jallcom.2018.10.108
    [12]
    C. Zhang, A.N. Song, Y. Yuan, et al., Study on the hydrogen storage properties of a TiZrNbTa high entropy alloy, Int. J. Hydrogen Energy, 45(2020), No. 8, p. 5367. doi: 10.1016/j.ijhydene.2019.05.214
    [13]
    M.D.B. Ferraz, W.J. Botta, and G. Zepon, Synthesis, characterization and first hydrogen absorption/desorption of the Mg35Al15Ti25V10Zn15 high entropy alloy, Int. J. Hydrogen Energy, 47(2022), No. 54, p. 22881. doi: 10.1016/j.ijhydene.2022.05.098
    [14]
    R. Soler, A. Evirgen, M. Yao, et al., Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure, Acta Mater., 156(2018), p. 86. doi: 10.1016/j.actamat.2018.06.010
    [15]
    S. Vrtnik, J. Lužnik, P. Koželj, et al., Disordered ferromagnetic state in the Ce–Gd–Tb–Dy–Ho hexagonal high-entropy alloy, J. Alloys Compd., 742(2018), p. 877. doi: 10.1016/j.jallcom.2018.01.331
    [16]
    Y. Yuan, Y. Wu, X. Tong, et al., Rare-earth high-entropy alloys with giant magnetocaloric effect, Acta Mater., 125(2017), p. 481. doi: 10.1016/j.actamat.2016.12.021
    [17]
    A. Khawam and D.R. Flanagan, Solid-state kinetic models: Basics and mathematical fundamentals, J. Phys. Chem. B, 110(2006), No. 35, p. 17315. doi: 10.1021/jp062746a
    [18]
    A. Jelen, J.H. Jang, J. Oh, et al., Nanostructure and local polymorphism in “ideal-like” rare-earths-based high-entropy alloys, Mater. Charact., 172(2021), art. No. 110837. doi: 10.1016/j.matchar.2020.110837
    [19]
    K. Fu, G.L. Li, J.G. Li, Y. Liu, W.H. Tian, and X.G. Li, Experimental study and thermodynamic assessment of the dysprosium-hydrogen binary system, J. Alloys Compd., 696(2017), p. 60. doi: 10.1016/j.jallcom.2016.11.182
    [20]
    S.F. Lu, L. Ma, G.H. Rao, et al., Magnetocaloric effect of high-entropy rare-earth alloy GdTbHoErY, J. Mater. Sci. Mater. Electron., 32(2021), No. 8, p. 10919. doi: 10.1007/s10854-021-05749-1
    [21]
    S.F. Lu, L. Ma, J. Wang, et al., Effect of configuration entropy on magnetocaloric effect of rare earth high-entropy alloy, J. Alloys Compd., 874(2021), art. No. 159918. doi: 10.1016/j.jallcom.2021.159918
    [22]
    M. Krnel, S. Vrtnik, A. Jelen, et al., Speromagnetism and asperomagnetism as the ground states of the Tb–Dy–Ho–Er–Tm “ideal” high-entropy alloy, Intermetallics, 117(2020), art. No. 106680. doi: 10.1016/j.intermet.2019.106680
    [23]
    V.V. Burnasheva, E.E. Fokina, V.N. Fokin, S.L. Troitskaya, and K.N. Semenenko, Formation of scandium and yttrium hydrides in the presence of intermetallic ScFe1.74 and YFe2 compounds, Russ. J. Inorg. Chem., 29(1984), No. 6, p. 1379.
    [24]
    M. Ellner, H. Reule, and E.J. Mittemeijer, Unit cell parameters and densities of the gadolinium dihydride GdH2+ x, J. Alloys Compd., 279(1998), No. 2, p. 179. doi: 10.1016/S0925-8388(98)00681-1
    [25]
    A. Pebler and W.E. Wallace, Crystal structures of some lanthanide hydrides1, J. Phys. Chem., 66(1962), No. 1, p. 148. doi: 10.1021/j100807a033
    [26]
    J.E. Bonnet and J.N. Daou, Rare‐earth dihydride compounds: Lattice thermal expansion and investigation of the thermal dissociation, J. Appl. Phys., 48(1977), No. 3, p. 964. doi: 10.1063/1.323717
    [27]
    N. Zapp, D. Sheptyakov, A. Franz, and H. Kohlmann, HoHO: A paramagnetic air-resistant ionic hydride with ordered anions, Inorg. Chem., 60(2021), No. 6, p. 3972. doi: 10.1021/acs.inorgchem.0c03822
    [28]
    D.G. Westlake, Hydrides of intermetallic compounds: A review of stabilities, stoichiometries and preferred hydrogen sites, J. Less Common Met., 91(1983), No. 1, p. 1. doi: 10.1016/0022-5088(83)90091-7
    [29]
    Z.J. Wang, C.T. Liu, and P. Dou, Thermodynamics of vacancies and clusters in high-entropy alloys, Phys. Rev. Mater., 1(2017), No. 4, art. No. 043601. doi: 10.1103/PhysRevMaterials.1.043601
    [30]
    R. Floriano, G. Zepon, K. Edalati, et al., Hydrogen storage in TiZrNbFeNi high entropy alloys, designed by thermodynamic calculations, Int. J. Hydrogen Energy, 45(2020), No. 58, p. 33759. doi: 10.1016/j.ijhydene.2020.09.047
    [31]
    R. Floriano, G. Zepon, K. Edalati, et al., Hydrogen storage properties of new A3B2-type TiZrNbCrFe high-entropy alloy, Int. J. Hydrogen Energy, 46(2021), No. 46, p. 23757. doi: 10.1016/j.ijhydene.2021.04.181
    [32]
    K.R. Cardoso, V. Roche, A.M. Jorge Jr, F.J. Antiqueira, G. Zepon, and Y. Champion, Hydrogen storage in MgAlTiFeNi high entropy alloy, J. Alloys Compd., 858(2021), art. No. 158357. doi: 10.1016/j.jallcom.2020.158357
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(6)

    Share Article

    Article Metrics

    Article Views(250) PDF Downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return