Darwin Michell Cheje Machaca, Amilton Barbosa Botelho Junior, Thamyres Cardoso de Carvalho, Jorge Alberto Soares Tenório, and Denise Crocce Romano Espinosa, Hydrometallurgical processing of chalcopyrite: A review of leaching techniques, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2537-2555. https://doi.org/10.1007/s12613-024-2934-4
Cite this article as:
Darwin Michell Cheje Machaca, Amilton Barbosa Botelho Junior, Thamyres Cardoso de Carvalho, Jorge Alberto Soares Tenório, and Denise Crocce Romano Espinosa, Hydrometallurgical processing of chalcopyrite: A review of leaching techniques, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2537-2555. https://doi.org/10.1007/s12613-024-2934-4
Review

Hydrometallurgical processing of chalcopyrite: A review of leaching techniques

+ Author Affiliations
  • Corresponding author:

    Darwin Michell Cheje Machaca    E-mail: dcheje12@usp.br

  • Received: 26 November 2023Revised: 13 May 2024Accepted: 15 May 2024Available online: 16 May 2024
  • Copper, an essential metal for the energy transition, is primarily obtained from chalcopyrite through hydrometallurgical and pyrometallurgical methods. The risks and harmful impacts of these processes pose significant concerns for environmental and human safety, highlighting the need for more efficient and eco-friendly hydrometallurgical methods. This review article emphasizes current processes such as oxidative leaching, bioleaching, and pressure leaching that have demonstrated efficiency in overcoming the complicated chalcopyrite network. Oxidative leaching operates under benign conditions within the leaching media; nevertheless, the introduction of oxidizing agents provides benefits and advantages. Bioleaching, a non-aggressive method, has shown a gradual increase in copper extraction efficiency and has been explored using both primary and secondary sources. Pressure leaching, known for its effectiveness and selectivity in copper extraction, is becoming commercially more viable with increased research investments. This research also provides important data for advancing future research in the field.
  • loading
  • [1]
    M.C. Apua and M.S. Madiba, Leaching kinetics and predictive models for elements extraction from copper oxide ore in sulphuric acid, J. Taiwan Inst. Chem. Eng., 121(2021), p. 313. doi: 10.1016/j.jtice.2021.04.005
    [2]
    M. Saidi and H. Kadkhodayan, Experimental and simulation study of copper recovery process from copper oxide ore using aspen plus software: Optimization and sensitivity analysis of effective parameters, J. Environ. Chem. Eng., 8(2020), No. 3, art. No. 103772. doi: 10.1016/j.jece.2020.103772
    [3]
    IEA, World Energy Outlook 2022, IEA, 2022 [2024-08-20]. https://www.iea.org/reports/world-energy-outlook-2022?language=es
    [4]
    K. Hund, D. La Porta, T.P. Fabregas, T. Laing, and J. Drexhage, Minerals for Climate Action : The Mineral Intensity of the Clean Energy Transition, World Bank, Washington, 2020.
    [5]
    J. Kulczycka, Ł. Lelek, A. Lewandowska, H. Wirth, and J.D. Bergesen, Environmental impacts of energy-efficient pyrometallurgical copper smelting technologies: The consequences of technological changes from 2010 to 2050, J. Ind. Ecol., 20(2016), No. 2, p. 304. doi: 10.1111/jiec.12369
    [6]
    C. Sykes, A. Brinson, G. Tanudisastro, M. Jimenez, and J. Djohari, Zero Emission Copper Mine of the Future, The Warren Centre, 2020 [2024-08-20]. https://ses.library.usyd.edu.au/handle/2123/24317
    [7]
    European Commission, Study on the Critical Raw Materials for the EU 2023 - Final Report, Brussels, 2023 [2024-08-20]. https://single-market-economy.ec.europa.eu/publications/study-critical-raw-materials-eu-2023-final-report_en
    [8]
    D. Bulin, Canada’s strategy for key critical raw materials. Case study: Copper and graphite, Global Econ. Obs., 11(2023), No. 1, p. 54.
    [9]
    Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy Releases 2023 Critical Materials Assessment to Evaluate Supply Chain Security for Clean Energy Technologies, 2023 [2024-08-20]. https://www.energy.gov/eere/articles/us-department-energy-releases-2023-critical-materials-assessment-evaluate-supply
    [10]
    A. Bernal, J. Husar, and J. Bracht, Latin America ’s Opportunity in Critical Minerals for the Clean Energy Transition, International Energy Agency, 2023 [2024-08-20]. https://www.iea.org/commentaries/latin-america-s-opportunity-in-critical-minerals-for-the-clean-energy-transition
    [11]
    R.K. Dhir, J. de Brito, R. Mangabhai, and C.Q. Lye, Production and properties of copper slag, [in] Sustainable Construction Materials : Copper Slag, Woodhead Publishing, Cambridge, 2017, p. 27.
    [12]
    M.E. Schlesinger, K.C. Sole, W.G. Davenport, and G.R.A. Flores, Extractive Metallurgy of Copper, Elsevier, Amsterdam, 2021.
    [13]
    A.K. Biswas and W.G. Davenport, Extractive Metallurgy of Copper : International Series on Materials Science and Technology, Elsevier, Amsterdam, 2013.
    [14]
    T. Norgate and S. Jahanshahi, Low grade ores–Smelt, leach or concentrate?, Miner. Eng., 23(2010), No. 2, p. 65. doi: 10.1016/j.mineng.2009.10.002
    [15]
    L.R. Adrianto, S. Pfister, and S. Hellweg, Regionalized life cycle inventories of global sulfidic copper tailings, Environ. Sci. Technol., 56(2022), No. 7, p. 4553. doi: 10.1021/acs.est.1c01786
    [16]
    T. Hidalgo, L. Kuhar, A. Beinlich, and A. Putnis, Kinetic study of chalcopyrite dissolution with iron(III) chloride in methanesulfonic acid, Miner. Eng., 125(2018), p. 66. doi: 10.1016/j.mineng.2018.05.025
    [17]
    K. Pérez, N. Toro, E. Gálvez, P. Robles, R. Wilson, and A. Navarra, Environmental, economic and technological factors affecting Chilean copper smelters–A critical review, J. Mater. Res. Technol., 15(2021), p. 213. doi: 10.1016/j.jmrt.2021.08.007
    [18]
    National Minerals Information Center, Mineral Commodity Summaries 2023, Reston, 2023 [2024-08-20]. https://pubs.usgs.gov/publication/mcs2023
    [19]
    Statista, Global Copper Mining Industry-Statistics & Facts, 2022 [2024-08-20]. https://www.statista.com/topics/1409/copper/#topicOverview
    [20]
    P. Paul, ICSG Published Copper Market Forecast for 2022 and 2023, 2022 [2024-08-20]. https://www.scrapmonster.com/news/icsg-published-copper-market-forecast-for-2022-and-2023/1/85294
    [21]
    Ó. Landerretche Moreno and E. Silva Ramos, Situación de La Industria del Cobre y Reacción de los Productores, Chile Después del Superciclo del Cobre, 2016 [2024-08-20]. https://repositorio.uchile.cl/handle/2250/139229
    [22]
    Fred Economic Data ST. LOUIS FED, Global Price of Copper (PCOPPUSDM ), 2022 [2024-08-20]. https://fred.stlouisfed.org/series/PCOPPUSDM
    [23]
    International Monetary Fund, World Economic Outlook Database, 2015 [2024-08-20]. www.imfbookstore.org
    [24]
    The University of Arizona, Copper Mining and Processing : Processing Copper Ores, Superfund Research Center, 2020 [2024-08-20]. https://superfund.arizona.edu/resources/learning-modules-english/copper-mining-and-processing/processing-copper-ores
    [25]
    F. Crundwell, M. Moats, V. Ramachandran, T. Robinson, and W.G. Davenport, Extractive Metallurgy of Nickel , Cobalt and Platinum Group Metals, Elsevier, Oxford, 2011
    [26]
    R.B. Abarca and V.G. Lucero, Informe de Actualización del Consumo Energético de la Minería del Cobre Al Año 2022, 2024 [2024-08-20]. https://www.cochilco.cl/Listado Temtico/Informe de Consumo de Energía al 2021 Final.pdf
    [27]
    Cochilco, Proyección del Consumo de Energía Eléctrica en la Minería del Cobre 2022-2033, 2023 [2024-08-20]. https://www.cochilco.cl/Listado Temtico/Proyección Consumo EE 2022-2033 Final con rpi.pdf
    [28]
    M. Deveci, P.R. Brito-Parada, D. Pamucar, and E.A. Varouchakis, Rough sets based Ordinal Priority Approach to evaluate sustainable development goals (SDGs) for sustainable mining, Resour. Policy, 79(2022), art. No. 103049. doi: 10.1016/j.resourpol.2022.103049
    [29]
    S. Adomako and M.D. Tran, Sustainable environmental strategy, firm competitiveness, and financial performance: Evidence from the mining industry, Resour. Policy, 75(2022), art. No. 102515. doi: 10.1016/j.resourpol.2021.102515
    [30]
    N.B.R. Monteiro, E.A. da Silva, and J.M. Moita Neto, Sustainable development goals in mining, J. Clean. Prod., 228(2019), p. 509. doi: 10.1016/j.jclepro.2019.04.332
    [31]
    C.J. Moran, S. Lodhia, N.C. Kunz, and D. Huisingh, Sustainability in mining, minerals and energy: New processes, pathways and human interactions for a cautiously optimistic future, J. Clean. Prod., 84(2014), p. 1. doi: 10.1016/j.jclepro.2014.09.016
    [32]
    J.W. Huaracha Hilario, Lixiviación de Concentrados Flotación de Cobre Utilizando Sales Oxidantes Férricas y Médios Clorurantes, Universidad Nacional de San Agustín de Arequipa, 2021 [2024-08-20]. http://hdl.handle.net/20.500.12773/14550
    [33]
    M.K. Sahlabad, S. Javanshir, and M. Honarmand, Improvement in atmospheric leaching of chalcopyrite concentrate using a new environmentally-friendly ionic liquid, Hydrometallurgy, 211(2022), art. No. 105893. doi: 10.1016/j.hydromet.2022.105893
    [34]
    H.H. Huang, The Eh-pH diagram and its advances, Metals, 6(2016), No. 1, p. 23. doi: 10.3390/met6010023
    [35]
    E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, and A. Ballester, Leaching of chalcopyrite with ferric ion. Part II: Effect of redox potential, Hydrometallurgy, 93(2008), No. 3-4, p. 88. doi: 10.1016/j.hydromet.2008.04.016
    [36]
    S.L. Harmer, J.E. Thomas, D. Fornasiero, and A.R. Gerson, The evolution of surface layers formed during chalcopyrite leaching, Geochim. Cosmochim. Acta, 70(2006), No. 17, p. 4392. doi: 10.1016/j.gca.2006.06.1555
    [37]
    H.R. Watling, Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate–chloride and sulfate–nitrate process options, Hydrometallurgy, 140(2013), p. 163. doi: 10.1016/j.hydromet.2013.09.013
    [38]
    L.M. de Melo Silva Cheloni, F.L. Martins, L. Moreira Pinto, M.L. Marques Rodrigues, and V.A. Leão, Chemical and biological leaching of chalcopyrite-Elemental sulfur reaction products, Miner. Process. Extr. Metall. Rev., 45(2024), No. 5, p. 453. doi: 10.1080/08827508.2023.2181347
    [39]
    P. Ortega-Tong, J. Jamieson, B.C. Bostick, A. Fourie, and H. Prommer, Secondary phase formation during electrokinetic in situ leaching of intact copper sulphide ore, Hydrometallurgy, 216(2023), art. No. 105993. doi: 10.1016/j.hydromet.2022.105993
    [40]
    C.Z. Zheng, K.X. Jiang, Z.M. Cao, S.P. Liu, H.B. Wang, and H. Ma, Thermodynamic interaction and iron passivation mechanism of copper–cobalt sulfide concentrates during pressure leaching, Chem. Pap., 77(2023), No. 5, p. 2737. doi: 10.1007/s11696-023-02663-0
    [41]
    E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, and A. Ballester, Leaching of chalcopyrite with ferric ion. Part I: General aspects, Hydrometallurgy, 93(2008), No. 3-4, p. 81. doi: 10.1016/j.hydromet.2008.04.015
    [42]
    K.J. Nyembwe, E. Fosso-Kankeu, F. Waanders, and M. Mkandawire, pH-dependent leaching mechanism of carbonatitic chalcopyrite in ferric sulfate solution, Trans. Nonferrous Met. Soc. China, 31(2021), No. 7, p. 2139. doi: 10.1016/S1003-6326(21)65644-3
    [43]
    M. Al-Harahsheh, S. Kingman, and A. Al-Harahsheh, Ferric chloride leaching of chalcopyrite: Synergetic effect of CuCl2, Hydrometallurgy, 91(2008), No. 1-4, p. 89.
    [44]
    K. Tkácová and P. Baláž, Structural and temperature sensitivity of leaching of chalcopyrite with iron(III) sulphate, Hydrometallurgy, 21(1988), No. 1, p. 103. doi: 10.1016/0304-386X(88)90019-9
    [45]
    M.J. Nicol, The role of the iodide/iodine couple as a redox mediator in the dissolution of chalcopyrite in sulfate media. An electrochemical study, Hydrometallurgy, 220(2023), art. No. 106088. doi: 10.1016/j.hydromet.2023.106088
    [46]
    R. Winarko, Iodine-assisted Heap Leaching of Chalcopyrite : Laboratory and Modelling Studies [Dissertation], University of British Columbia, Vancouver, 2022.
    [47]
    C.I. Castellón and M.E. Taboada, Leaching of copper concentrate with iodized salts in a saline acid medium: Part 1—Effect of concentrations, Materials, 16(2023), No. 6, p. 2312. doi: 10.3390/ma16062312
    [48]
    G. Granata, A. Miura, W. Liu, F. Pagnanelli, and C. Tokoro, Iodide-assisted leaching of chalcopyrite in acidic ferric sulfate media, Hydrometallurgy, 186(2019), p. 244. doi: 10.1016/j.hydromet.2019.04.019
    [49]
    R. Winarko, D.B. Dreisinger, A. Miura, Y. Fukano, and W.Y. Liu, Iodine-assisted chalcopyrite leaching in ferric sulfate media: Kinetic study under fully controlled redox potential and pH, Hydrometallurgy, 208(2022), art. No. 105797. doi: 10.1016/j.hydromet.2021.105797
    [50]
    R. Winarko, D.B. Dreisinger, A. Miura, C. Tokoro, and W.Y. Liu, Kinetic modelling of chalcopyrite leaching assisted by iodine in ferric sulfate media, Hydrometallurgy, 197(2020), art. No. 105481. doi: 10.1016/j.hydromet.2020.105481
    [51]
    Comisión Chilena del Cobre, Inversión en la Minería Chilena-Cartera de Projetos 2022-2031, 2022 [2024-08-20]. https://www.cochilco.cl/Listado Temtico/2022 11 07 Inversión en la minería chilena - cartera de proyectos 2022-2031.pdf
    [52]
    M.D. Turan, Z.A. Sarı, and H. Nizamoğlu, Pressure leaching of chalcopyrite with oxalic acid and hydrogen peroxide, J. Taiwan Inst. Chem. Eng., 118(2021), p. 112. doi: 10.1016/j.jtice.2020.10.021
    [53]
    Á. Ruiz-Sánchez and G.T. Lapidus, Study of chalcopyrite leaching from a copper concentrate with hydrogen peroxide in aqueous ethylene glycol media, Hydrometallurgy, 169(2017), p. 192. doi: 10.1016/j.hydromet.2017.01.014
    [54]
    M.J. Nicol, The role and use of hydrogen peroxide as an oxidant in the leaching of minerals. 1. Acid solutions, Hydrometallurgy, 193(2020), art. No. 105328. doi: 10.1016/j.hydromet.2020.105328
    [55]
    H. Arslanoğlu and A. Yaraş, Chalcopyrite leaching with hydrogen peroxide in formic acid medium, Trans. Indian Inst. Met., 73(2020), No. 3, p. 785. doi: 10.1007/s12666-020-01896-x
    [56]
    M. Sokić, B. Marković, S. Stanković, et al., Kinetics of chalcopyrite leaching by hydrogen peroxide in sulfuric acid, Metals, 9(2019), No. 11, art. No. 1173. doi: 10.3390/met9111173
    [57]
    I. Lanasca Mavila and I. Enriquez Villa, Cinética de Disolución de la Calcopirita con Peróxido de hidrógeno en Médio Ácido Sulfúrico en la Unidad Minera Contestable, 2019 [2024-08-20]. http://hdl.handle.net/20.500.12894/8497
    [58]
    D. Salas-Martell, G. Pareja-Guzman, J. Tello-Hijar, and J.C.F. Rodriguez-Reyes, Leaching of a pyrite-based ore containing copper using sulfuric acid and hydrogen peroxide, Int. J. Ind. Chem., 11(2020), No. 3, p. 195. doi: 10.1007/s40090-020-00212-2
    [59]
    P.A. Olubambi and J.H. Potgieter, Investigations on the mechanisms of sulfuric acid leaching of chalcopyrite in the presence of hydrogen peroxide, Miner. Process. Extr. Metall. Rev., 30(2009), No. 4, p. 327. doi: 10.1080/08827500902958191
    [60]
    A.O. Adebayo, K.O. Ipinmoroti, and O.O. Ajayi, Dissolution kinetics of chalcopyrite with hydrogen peroxide in sulphuric acid medium, Chem. Biochem. Eng. Q., 17(2003), No. 3, p. 213.
    [61]
    M.M. Antonijević, Z.D. Janković, and M.D. Dimitrijević, Kinetics of chalcopyrite dissolution by hydrogen peroxide in sulphuric acid, Hydrometallurgy, 71(2004), No. 3-4, p. 329. doi: 10.1016/S0304-386X(03)00082-3
    [62]
    T. Agacayak, A. Aras, S. Aydogan, and M. Erdemoglu, Leaching of chalcopyrite concentrate in hydrogen peroxide solution, Physicochem. Probl. Miner. Process., 50(2014), No. 2, p. 657.
    [63]
    O.J. Solis-Marcíal and G.T. Lapidus, Improvement of chalcopyrite dissolution in acid media using polar organic solvents, Hydrometallurgy, 131(2013), p. 120. doi: 10.1016/j.hydromet.2012.11.006
    [64]
    N. Nurtazina, N. Uvarov, R. Azhigulova, and P. Tyapkin, Chalcopyrite leaching by amino acid solutions in the presence of hydrogen peroxide, Physicochem. Probl. Miner. Process., 58(2022), No. 6, art. No. 157067.
    [65]
    A.R. Sanchez, Estudio de la Lixiviación Oxidativa de Calcopirita con Etilenglicol, Universidad Autónoma Metropolitana, Ciudad de México, 2019 [2024-08-20]. https://www.lareferencia.info/vufind/Record/MX_493f5512da8948076389c1e37c26aac8
    [66]
    V. Mahajan, M. Misra, K. Zhong, and M.C. Fuerstenau, Enhanced leaching of copper from chalcopyrite in hydrogen peroxide–glycol system, Miner. Eng., 20(2007), No. 7, p. 670. doi: 10.1016/j.mineng.2006.12.016
    [67]
    A. Ruiz-Sánchez and G.T. Lapidus, Kinetics of chalcopyrite leaching in the aqueous medium of ethylene glycol-hydrogen peroxide-sulfuric acid, Tópicos de Investigación en Ciencias de la Tierra y Materiales, 9(2022), No. 9, p.53.
    [68]
    Y.L. Bai, W. Wang, F. Xie, H.P. Zhu, D.K. Lu, and K.X. Jiang, Effect of H2O2 and ethylene glycol on molybdenite dissolution in H2SO4 solution, Trans. Indian Inst. Met., 76(2023), No. 1, p. 39. doi: 10.1007/s12666-022-02702-6
    [69]
    F. Valenzuela, Hydroprocess 2023, Santiago, 2023 [2024-08-20]. https://www.gecaminpublications.com/hydroprocess-2023/
    [70]
    R. Rogers and K.R. Seddon, Ionic liquids: Solvents of the future?, Science, 302(2003), p. 792. doi: 10.1126/science.1090313
    [71]
    T.G. Dong, Y.X. Hua, Q.B. Zhang, and D.G. Zhou, Leaching of chalcopyrite with Brønsted acidic ionic liquid, Hydrometallurgy, 99(2009), No. 1-2, p. 33. doi: 10.1016/j.hydromet.2009.06.001
    [72]
    C. Carlesi, E. Cortes, G. Dibernardi, J. Morales, and E. Muñoz, Ionic liquids as additives for acid leaching of copper from sulfidic ores, Hydrometallurgy, 161(2016), p. 29. doi: 10.1016/j.hydromet.2016.01.012
    [73]
    C.L. Aguirre, N. Toro, N. Carvajal, H. Watling, and C. Aguirre, Leaching of chalcopyrite (CuFeS2) with an imidazolium-based ionic liquid in the presence of chloride, Miner. Eng., 99(2016), p. 60. doi: 10.1016/j.mineng.2016.09.016
    [74]
    J.A. Whitehead, J. Zhang, N. Pereira, A. McCluskey, and G.A. Lawrance, Application of 1-alkyl-3-methyl-imidazolium ionic liquids in the oxidative leaching of sulphidic copper, gold and silver ores, Hydrometallurgy, 88(2007), No. 1-4, p. 109. doi: 10.1016/j.hydromet.2007.03.009
    [75]
    A.J. Greer, J. Jacquemin, and C. Hardacre, Industrial applications of ionic liquids, Molecules, 25(2020), No. 21, art. No. 5207. doi: 10.3390/molecules25215207
    [76]
    J.X. Hu, G.C. Tian, F.T. Zi, and X.Z. Hu, Leaching of chalcopyrite with hydrogen peroxide in 1-hexyl-3-methyl-imidazolium hydrogen sulfate ionic liquid aqueous solution, Hydrometallurgy, 169(2017), p. 1. doi: 10.1016/j.hydromet.2016.12.001
    [77]
    O. Kuzmina, E. Symianakis, D. Godfrey, T. Albrecht, and T. Welton, Ionic liquids for metal extraction from chalcopyrite: Solid, liquid and gas phase studies, Phys. Chem. Chem. Phys., 19(2017), No. 32, p. 21556. doi: 10.1039/C7CP03540C
    [78]
    Y. González, L. Ayala, C. Escobar, P. Hernández, R. Sepúlveda, and N. Toro, Chalcopyrite leaching with ionic liquid based on idimazolium, chloride and pyrite in an oxygenated medium, AIP Conf. Proc., 2281(2020), art. No. 020010.
    [79]
    M. Rodríguez, L. Ayala, C. Escobar, P. Hernández, R. Sepúlveda, and N. Toro, Chalcopyrite leaching with ionic liquid based on idimazolium, chloride and pyrite, AIP Conf. Proc., 2281(2020), art. No. 020012.
    [80]
    M. Rodríguez, L. Ayala, P. Robles, et al., Leaching chalcopyrite with an imidazolium-based ionic liquid and bromide, Metals, 10(2020), No. 2, art. No. 183. doi: 10.3390/met10020183
    [81]
    J.X. Hu, F.T. Zi, and G.C. Tian, Extraction of copper from chalcopyrite with potassium dichromate in 1-ethyl-3-methylimidazolium hydrogen sulfate ionic liquid aqueous solution, Miner. Eng., 172(2021), art. No. 107179. doi: 10.1016/j.mineng.2021.107179
    [82]
    J. Castillo, N. Toro, P. Hernández, et al., Extraction of Cu(II), Fe(III), Zn(II), and Mn(II) from aqueous solutions with ionic liquid R4NCy, Metals, 11(2021), No. 10, art. No. 1585. doi: 10.3390/met11101585
    [83]
    R. Lertlapwasin, N. Bhawawet, A. Imyim, and S. Fuangswasdi, Ionic liquid extraction of heavy metal ions by 2-aminothiophenol in 1-butyl-3-methylimidazolium hexafluorophosphate and their association constants, Sep. Purif. Technol., 72(2010), No. 1, p. 70. doi: 10.1016/j.seppur.2010.01.004
    [84]
    W.G. Liu, W.C. Li, W.B. Liu, Y.B. Shen, S.J. Zhou, and B.Y. Cui, A new strategy for extraction of copper cyanide complex ions from cyanide leach solutions by ionic liquids, J. Mol. Liq., 383(2023), art. No. 122108. doi: 10.1016/j.molliq.2023.122108
    [85]
    J.J. Wu, J. Ahn, and J. Lee, Kinetic and mechanism studies using shrinking core model for copper leaching from chalcopyrite in methanesulfonic acid with hydrogen peroxide, Miner. Process. Extr. Metall. Rev., 42(2021), No. 1, p. 38. doi: 10.1080/08827508.2020.1795850
    [86]
    J. Ahn, J.J. Wu, and J. Lee, Investigation on chalcopyrite leaching with methanesulfonic acid (MSA) and hydrogen peroxide, Hydrometallurgy, 187(2019), p. 54. doi: 10.1016/j.hydromet.2019.05.001
    [87]
    J. Ahn, J.J. Wu, and J. Lee, Alternative lixiviant for copper leaching from chalcopyrite concentrate, [in] Extraction 2018 : Proceedings of the First Global Conference on Extractive Metallurgy, Springer International Publishing, Cham, 2018, p. 1257.
    [88]
    E.E. Price, Copper Leaching from Chalcopyrite with an Alternative Lixiviant /Oxidant System [Dissertation], The University of Arizona, Tucson, 2022.
    [89]
    J. Ahn, J.J. Wu, and J. Lee, A comparative kinetic study of chalcopyrite leaching using alternative oxidants in methanesulfonic acid system, Miner. Process. Extr. Metall. Rev., 43(2022), No. 3, p. 390. doi: 10.1080/08827508.2021.1893719
    [90]
    J.J. Eksteen, E.A. Oraby, and B.C. Tanda, A conceptual process for copper extraction from chalcopyrite in alkaline glycinate solutions, Miner. Eng., 108(2017), p. 53. doi: 10.1016/j.mineng.2017.02.001
    [91]
    D. Shin, J. Ahn, and J. Lee, Kinetic study of copper leaching from chalcopyrite concentrate in alkaline glycine solution, Hydrometallurgy, 183(2019), p. 71. doi: 10.1016/j.hydromet.2018.10.021
    [92]
    M. Khezri, B. Rezai, A.A. Abdollahzadeh, B.P. Wilson, M. Molaeinasab, and M. Lundström, Investigation into the effect of mechanical activation on the leaching of chalcopyrite in a glycine medium, Hydrometallurgy, 203(2021), art. No. 105492. doi: 10.1016/j.hydromet.2020.105492
    [93]
    B.C. Tanda, J.J. Eksteen, E.A. Oraby, and G.M. O’Connor, The kinetics of chalcopyrite leaching in alkaline glycine/glycinate solutions, Miner. Eng., 135(2019), p. 118. doi: 10.1016/j.mineng.2019.02.035
    [94]
    B.C. Tanda, E.A. Oraby, and J.J. Eksteen, Recovery of copper from alkaline glycine leach solution using solvent extraction, Sep. Purif. Technol., 187(2017), p. 389. doi: 10.1016/j.seppur.2017.06.075
    [95]
    G.M. O’Connor, K. Lepkova, J.J. Eksteen, and E.A. Oraby, Electrochemical behaviour of copper in alkaline glycine solutions, Hydrometallurgy, 181(2018), p. 221. doi: 10.1016/j.hydromet.2018.10.001
    [96]
    M.J. Nicol, A comparative assessment of the application of ammonium chloride and glycine as lixiviants in the heap leaching of chalcopyritic ores, Hydrometallurgy, 175(2018), p. 285. doi: 10.1016/j.hydromet.2017.12.014
    [97]
    R.M. Attia and E.G. Awny, Leaching characterisations and recovery of copper and uranium with glycine solution of sandy dolomite, Allouga area, South Western Sinai, Egypt, Int. J. Environ. Anal. Chem., 103(2023), No. 20, p. 9633. doi: 10.1080/03067319.2021.2014471
    [98]
    T. Hidalgo, R. McDonald, A. Beinlich, L. Kuhar, and A. Putnis, Comparative analysis of copper dissolution and mineral transformations in coarse chalcopyrite for different oxidant/lixiviant systems at elevated temperature (110°C and 170°C), Hydrometallurgy, 207(2022), art. No. 105700. doi: 10.1016/j.hydromet.2021.105700
    [99]
    Z.A. Sarı, M.D. Turan, H. Nizamoğlu, A. Demiraslan, and T. Depci, Selective copper recovery with HCl leaching from copper oxalate material, Min. Metall. Explor., 37(2020), No. 3, p. 887. doi: 10.1007/s42461-020-00196-8
    [100]
    M.D. Turan, Z.A. Sarı, and M. Erdemoğlu, Copper enrichment in solid with selective reverse leaching with oxalic acid, J. Sustain. Metall., 6(2020), No. 3, p. 428. doi: 10.1007/s40831-020-00286-3
    [101]
    A. Ruiz-Sánchez, I. Lázaro, and G.T. Lapidus, Improvement effect of organic ligands on chalcopyrite leaching in the aqueous medium of sulfuric acid-hydrogen peroxide-ethylene glycol, Hydrometallurgy, 193(2020), art. No. 105293. doi: 10.1016/j.hydromet.2020.105293
    [102]
    C.I. Castellón and M.E. Taboada, Leaching of copper concentrates with iodized salts in a saline acid medium: Part 2—Effect on chloride concentration and an aerated system, Materials, 16(2023), No. 17, p. 5940. doi: 10.3390/ma16175940
    [103]
    J.E. Dutrizac, The kinetics of dissolution of chalcopyrite in ferric ion media, Metall. Trans. B, 9(1978), No. 3, p. 431. doi: 10.1007/BF02654418
    [104]
    T. Havlík, Thermodynamic studies of heterogeneous systems in an aqueous medium, [in] Woodhead Publishing Series in Metals and Surface Engineering , Hydrometallurgy, Woodhead Publishing, Cambridge, 2008.
    [105]
    D. Maurice and J.A. Hawk, Ferric chloride leaching of mechanically activated chalcopyrite, Hydrometallurgy, 49(1998), No. 1-2, p. 103. doi: 10.1016/S0304-386X(98)00013-9
    [106]
    N.T. Phuong Thao, S. Tsuji, S. Jeon, et al., Redox potential-dependent chalcopyrite leaching in acidic ferric chloride solutions: Leaching experiments, Hydrometallurgy, 194(2020), art. No. 105299. doi: 10.1016/j.hydromet.2020.105299
    [107]
    T.A. Phillips, Economic Evaluation of a Process for Ferric Chloride Leaching of Chalcopyrite Concentrate, US Department of Interior, Bureau of Mines, 1976.
    [108]
    M.J. Carreño Espíndola, Estúdio de Lixiviación de Minerales Oxidados y Sulfurafos de Cobre como Alternativa a Procesos de Cconcentración en Contexto de Escasez Hídrica [Dissertation], Universidad de Talca, Talca, 2022.
    [109]
    J. Liddicoat and D. Dreisinger, Chloride leaching of chalcopyrite, Hydrometallurgy, 89(2007), No. 3-4, p. 323. doi: 10.1016/j.hydromet.2007.08.004
    [110]
    C.M. Torres, Y. Ghorbani, P.C. Hernández, F.J. Justel, M.I. Aravena, and O.O. Herreros, Cupric and chloride ions: Leaching of chalcopyrite concentrate with low chloride concentration media, Minerals, 9(2019), No. 10, art. No. 639. doi: 10.3390/min9100639
    [111]
    L.M. Wang, S.H. Yin, B.N. Deng, and A.X. Wu, Copper sulfides leaching assisted by acidic seawater-based media: Ionic strength and mechanism, Miner. Eng., 175(2022), art. No. 107286. doi: 10.1016/j.mineng.2021.107286
    [112]
    S. Rasouli, B. Mojtahedi, and H. Yoozbashizadeh, Oxidative leaching of chalcopyrite by cupric ion in chloride media, Trans. Indian Inst. Met., 73(2020), No. 4, p. 989. doi: 10.1007/s12666-020-01885-0
    [113]
    Comisión Chilena del Cobre, Sulfuros Primarios-Desafíos y Oportunidades, Minist. Min. Chile, Santiago, 2017 [2024-08-21]. https://www.cochilco.cl/Listado Temtico/sulfuros primarios_desafíos y oportunidades.pdf,
    [114]
    M. Astudillo, M. Garcia, V. Quezada, and L. Valásquez, The use of seawater in copper hydrometallurgical processing in Chile: A review, J. S. Afr. Inst. Min. Metall., 123(2023), No. 7, p. 357. doi: 10.17159/2411-9717/2445/2023
    [115]
    M.T.O. Abdelraheem and T. Agacayak, Effect of organic and inorganic compounds on dissolution kinetics of chalcopyrite in hydrogen peroxide–hydrochloric acid system, J. Saudi Chem. Soc., 26(2022), No. 3, art. No. 101478. doi: 10.1016/j.jscs.2022.101478
    [116]
    V. Quezada, A. Roca, O. Benavente, M. Cruells, B. Keith, and E. Melo, Effect of pretreatment prior to leaching on a chalcopyrite mineral in acid media using NaCl and KNO3, J. Mater. Res. Technol., 9(2020), No. 5, p. 10316. doi: 10.1016/j.jmrt.2020.07.055
    [117]
    V. Quezada, A. Roca, O. Benavente, M. Cruells, E. Melo, and M. Hernández, Pretreatment to leaching for a primary copper sulphide ore in chloride media, Metals, 11(2021), No. 8, art. No. 1260.
    [118]
    S. Zhong and Y.B. Li, An improved understanding of chalcopyrite leaching kinetics and mechanisms in the presence of NaCl, J. Mater. Res. Technol., 8(2019), No. 4, p. 3487. doi: 10.1016/j.jmrt.2019.06.020
    [119]
    M.D. Turan, M. Boyrazlı, and H.S. Altundoğan, Improving of copper extraction from chalcopyrite by using NaCl, J. Cent. South Univ., 25(2018), No. 1, p. 21. doi: 10.1007/s11771-018-3713-z
    [120]
    H. Chen, J.F. He, L.T. Zhu, et al., Eco-friendly oxidation leaching from chalcopyrite powder and kinetics assisted by sodium chloride in organic acid media, Adv. Powder Technol., 33(2022), No. 5, art. No. 103547. doi: 10.1016/j.apt.2022.103547
    [121]
    M.C. Ruiz, K.S. Montes, and R. Padilla, Chalcopyrite leaching in sulfate–chloride media at ambient pressure, Hydrometallurgy, 109(2011), No. 1-2, p. 37. doi: 10.1016/j.hydromet.2011.05.007
    [122]
    D. Dreisinger, W. Murray, D. Hunter, K. Baxter, J. Ferron, and C. Fleming, The Application of the PlatsolTM process to copper–nickel–cobalt–PGE/PGM concentrates from Polymet Mining’s Northmet deposit, [in] Proceedings of the ALTA World Forum on Nickel and Cobalt Hydrometallurgy, Perth, 2005.
    [123]
    P.K. Everett, Development of Intec Copper Process by an international consortium, [in] Hydrometallurgy ’94 : Papers presented at the International Symposium, Netherlands, 1994, p. 913.
    [124]
    Y.S. Zhang, L.Y. Zhang, G.L. Wang, et al., Bioleaching residue-introduced thermal activation-leaching of refractory chalcopyrite, Miner. Eng., 203(2023), art. No. 108368. doi: 10.1016/j.mineng.2023.108368
    [125]
    S. Panda, A. Akcil, N. Pradhan, and H. Deveci, Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology, Bioresour. Technol., 196(2015), p. 694. doi: 10.1016/j.biortech.2015.08.064
    [126]
    S. Delgado and D. Castillo, Influence of temperature on the growth of a microbian consortium and its bioxidative capacity on the iron of calcopirita, Ecol. Apl., 18(2019), No. 1, art. No. 85. doi: 10.21704/rea.v18i1.1310
    [127]
    N. Pradhan, K.C. Nathsarma, K. Srinivasa Rao, L.B. Sukla, and B.K. Mishra, Heap bioleaching of chalcopyrite: A review, Miner. Eng., 21(2008), No. 5, p. 355. doi: 10.1016/j.mineng.2007.10.018
    [128]
    D. Bevilaqua, A.L.L.C. Leite, O. Garcia, and O.H. Tuovinen, Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks, Process. Biochem., 38(2002), No. 4, p. 587. doi: 10.1016/S0032-9592(02)00169-3
    [129]
    K. Sasaki, Y. Nakamuta, T. Hirajima, and O.H. Tuovinen, Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans, Hydrometallurgy, 95(2009), No. 1-2, p. 153. doi: 10.1016/j.hydromet.2008.05.009
    [130]
    Y.B. Dong, H. Lin, K.B. Fu, X.F. Xu, and S.S. Zhou, Bioleaching of two different types of chalcopyrite by Acidithiobacillus ferrooxidans, Int. J. Miner. Metall. Mater., 20(2013), No. 2, p. 119. doi: 10.1007/s12613-013-0702-y
    [131]
    F.L. Martins, G.B. Patto, and V.A. Leão, Chalcopyrite bioleaching in the presence of high chloride concentrations, J. Chem. Technol. Biotechnol., 94(2019), No. 7, p. 2333. doi: 10.1002/jctb.6028
    [132]
    M.X. Hong, X.T. Huang, X.W. Gan, G.Z. Qiu, and J. Wang, The use of pyrite to control redox potential to enhance chalcopyrite bioleaching in the presence of Leptospirillum ferriphilum, Miner. Eng., 172(2021), art. No. 107145. doi: 10.1016/j.mineng.2021.107145
    [133]
    C.L. Liang, J.L. Xia, X.J. Zhao, et al., Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis, Hydrometallurgy, 105(2010), No. 1-2, p. 179. doi: 10.1016/j.hydromet.2010.07.012
    [134]
    Y.L. Bai, W. Wang, F. Xie, D.K. Lu, and K.X. Jiang, Effect of temperature, oxygen partial pressure and calcium lignosulphonate on chalcopyrite dissolution in sulfuric acid solution, Trans. Nonferrous Met. Soc. China, 32(2022), No. 5, p. 1650. doi: 10.1016/S1003-6326(22)65900-4
    [135]
    R. Padilla, D. Vega, and M.C. Ruiz, Pressure leaching of sulfidized chalcopyrite in sulfuric acid–oxygen media, Hydrometallurgy, 86(2007), No. 1-2, p. 80 doi: 10.1016/j.hydromet.2006.10.006
    [136]
    B. Mojtahedi, S. Rasouli, and H. Yoozbashizadeh, Pressure leaching of chalcopyrite concentrate with oxygen and kinetic study on the process in sulfuric acid solution, Trans. Indian Inst. Met., 73(2020), No. 4, p. 975. doi: 10.1007/s12666-020-01882-3
    [137]
    R.G. McDonald and D.M. Muir, Pressure oxidation leaching of chalcopyrite. Part I. Comparison of high and low temperature reaction kinetics and products, Hydrometallurgy, 86(2007), No. 3-4, p. 191. doi: 10.1016/j.hydromet.2006.11.015
    [138]
    G.X. Ji, Y.L. Liao, Y. Wu, J.J. Xi, and Q.F. Liu, A review on the research of hydrometallurgical leaching of low-grade complex chalcopyrite, J. Sustain. Metall., 8(2022), No. 3, p. 964. doi: 10.1007/s40831-022-00561-5
    [139]
    S. Matuska, K. Ochromowicz, and T. Chmielewski, Pressure leaching of sulfide concentrate produced by Lubin Concentrator (KGHM “Polska Miedz” SA, Poland), Physicochem. Probl. Miner. Process., 54(2018), p. 781.
    [140]
    Y.H. Lim, S.H. Kim, H.I. Lee, K.B. Jung, and K. Yoo, Leaching of copper from chalcopyrite using 50 L pressure oxidation autoclave, J. Korean Soc. Miner. Energy Resour. Eng., 56(2019), No. 4, p. 326. doi: 10.32390/ksmer.2019.56.4.326
    [141]
    L.S. Jiang, H.G. Leng, and B.S. Han, Dissolution and passivation mechanism of chalcopyrite during pressurized water leaching, Minerals, 13(2023), No. 8, art. No. 996. doi: 10.3390/min13080996
    [142]
    Y.L. Bai, W. Wang, S.R. Zhao, D.K. Lu, F. Xie, and D. Dreisinger, Effect of mechanical activation on leaching behavior and mechanism of chalcopyrite, Miner. Process. Extr. Metall. Rev., 43(2022), No. 4, p. 440. doi: 10.1080/08827508.2021.1906239
    [143]
    B.S. Han, B. Altansukh, K. Haga, Y. Takasaki, and A. Shibayama, Leaching and kinetic study on pressure oxidation of chalcopyrite in H₂SO₄ solution and the effect of pyrite on chalcopyrite leaching, J. Sustain. Metall., 3(2017), No. 3, p. 528. doi: 10.1007/s40831-017-0135-3
    [144]
    J. Cháidez, J. Parga, J. Valenzuela, R. Carrillo, and I. Almaguer, Leaching chalcopyrite concentrate with oxygen and sulfuric acid using a low-pressure reactor, Metals, 9(2019), No. 2, art. No. 189. doi: 10.3390/met9020189
    [145]
    L.L. Godirilwe, R.S. Magwaneng, R. Sagami, et al., Extraction of copper from complex carbonaceous sulfide ore by direct high-pressure leaching, Miner. Eng., 173(2021), art. No. 107181. doi: 10.1016/j.mineng.2021.107181
    [146]
    J.J. Xi, Y.L. Liao, G.X. Ji, Q.F. Liu, and Y. Wu, Mineralogical characteristics and oxygen pressure acid leaching of low-grade polymetallic complex chalcopyrite, J. Sustain. Metall., 8(2022), No. 4, p. 1628. doi: 10.1007/s40831-022-00594-w
    [147]
    G.X. Ji, Y.L. Liao, J.J. Xi, et al., Behavior and kinetics of copper during oxygen pressure leaching of complex chalcopyrite without acid, J. Sustain. Metall., 9(2023), No. 1, p. 350. doi: 10.1007/s40831-023-00658-5
    [148]
    J.J. Xi, G.X. Ji, Y.L. Liao, Q.F. Liu, and Y. Wu, Study on selective leaching of copper and simultaneous precipitation of iron in polymetallic complex chalcopyrite by hydrothermal leaching under oxygen pressure, Metall. Mater. Trans. B, 54(2023), No. 5, p. 2575. doi: 10.1007/s11663-023-02858-6
    [149]
    J.W. Miao, H.G. Leng, and B.S. Han, Leaching and kinetic study of chalcopyrite without acid in an O₂–H₂O system, J. Sustain. Metall., 9(2023), No. 3, p. 1279. doi: 10.1007/s40831-023-00730-0
    [150]
    C.Z. Zheng, K.X. Jiang, Z.M. Cao, et al., Pressure leaching behaviors of copper-cobalt sulfide concentrate from Congo, Sep. Purif. Technol., 309(2023), art. No. 123010. doi: 10.1016/j.seppur.2022.123010
    [151]
    J. Lee, S. Kim, B. Kim, and J.C. Lee, Effect of mechanical activation on the kinetics of copper leaching from copper sulfide (CuS), Metals, 8(2018), No. 3, p. 150. doi: 10.3390/met8030150
    [152]
    P. Baláž, Mechanochemistry in Minerals Engineering, Springer, Berlin, 2008, p. 257.
    [153]
    C.J. Agnew and N.J. Welham, Oxidation of chalcopyrite by extended milling, Int. J. Miner. Process., 77(2005), No. 4, p. 208. doi: 10.1016/j.minpro.2005.05.001
    [154]
    S.X. Zhao, G.R. Wang, H.Y. Yang, G.B. Chen, and X.M. Qiu, Agglomeration-aggregation and leaching properties of mechanically activated chalcopyrite, Trans. Nonferrous Met. Soc. China, 31(2021), No. 5, p. 1465. doi: 10.1016/S1003-6326(21)65590-5
    [155]
    Y.B. Li, Y.L. Yao, B. Wang, G.J. Qian, Z.M. Li, and Y.G. Zhu, New insights into chalcopyrite leaching enhanced by mechanical activation, Hydrometallurgy, 189(2019), art. No. 105131. doi: 10.1016/j.hydromet.2019.105131
    [156]
    G. Granata, K. Takahashi, T. Kato, and C. Tokoro, Mechanochemical activation of chalcopyrite: Relationship between activation mechanism and leaching enhancement, Miner. Eng., 131(2019), p. 280. doi: 10.1016/j.mineng.2018.11.027
    [157]
    H.Y. Yang, S.X. Zhao, G.R. Wang, et al., Mechanical activation modes of chalcopyrite concentrate and relationship between microstructure and leaching efficiency, Hydrometallurgy, 207(2022), art. No. 105778. doi: 10.1016/j.hydromet.2021.105778
    [158]
    Y.L. Bai, W. Wang, K.W. Dong, et al., Effect of microwave pretreatment on chalcopyrite dissolution in acid solution, J. Mater. Res. Technol., 16(2022), p. 471. doi: 10.1016/j.jmrt.2021.12.014
    [159]
    Y.B. Li, B. Wang, Q. Xiao, C. Lartey, and Q.W. Zhang, The mechanisms of improved chalcopyrite leaching due to mechanical activation, Hydrometallurgy, 173(2017), p. 149. doi: 10.1016/j.hydromet.2017.08.014
    [160]
    M. Hourn and D.W. Turner, Commercialisation of the Albion process, [in] Proceedings of the ALTA 2012 Gold Conference, Perth, 2012.
    [161]
    P. Baláž and E. Dutková, Fine milling in applied mechanochemistry, Miner. Eng., 22(2009), No. 7-8, p. 681. doi: 10.1016/j.mineng.2009.01.014
    [162]
    Y. Zhang, Analisis Ambiental de la Production de Cobre [Dissertation], Universitat Politècnica de Catalunya, Catalunya, 2015.
    [163]
    A.C. Blaga, A. Tucaliuc, and L. Kloetzer, Applications of ionic liquids in carboxylic acids separation, Membranes, 12(2022), No. 8, p. 771. doi: 10.3390/membranes12080771
    [164]
    IEA, Critical Minerals Market Review 2023, IEA, Paris, 2023 [2024-08-21]. https://www.iea.org/reports/critical-minerals-market-review-2023
    [165]
    IEA, Energy Technology Perspectives 2023, IEA, Paris, 2023 [2024-08-21]. https://www.iea.org/reports/energy-technology-perspectives-2023
    [166]
    M.S. Lallana and J.E. Pim, Reciclaje de metales. La alternativa a la minería, El Ecologista, 2022 [2024-08-21]. https://www.ecologistasenaccion.org/199283/reciclaje-de-metales-la-alternativa-a-la-mineria/
    [167]
    N. Nagarajan and P. Panchatcharam, Cost-effective and eco-friendly copper recovery from waste printed circuit boards using organic chemical leaching, Heliyon, 9(2023), No. 3, art. No. e13806. doi: 10.1016/j.heliyon.2023.e13806
    [168]
    J. Lee, B. Swain, B.W. Gu, C.G. Lee, and J.H. Yoon, Value extraction from semiconductor industry tantalum scrap through understanding the thermodynamics and chemistry, Int. J. Refract. Met. Hard Mater., 100(2021), art. No. 105641. doi: 10.1016/j.ijrmhm.2021.105641
    [169]
    K. Liu, Q.Y. Tan, J.D. Yu, and M.M. Wang, A global perspective on e-waste recycling, Circ. Econ., 2(2023), No. 1, art. No. 100028. doi: 10.1016/j.cec.2023.100028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(561) PDF Downloads(51) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return