Feng Zhang, Chenyang Zhang, Linlin Wu, Wei Sun, Hongliang Zhang, Jianhua Chen, Yong Pei, and Songjiang Li, Depression mechanism of sulfite ions on sphalerite and Pb2+ activated sphalerite in the flotation separation of galena from sphalerite, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2936-2
Cite this article as:
Feng Zhang, Chenyang Zhang, Linlin Wu, Wei Sun, Hongliang Zhang, Jianhua Chen, Yong Pei, and Songjiang Li, Depression mechanism of sulfite ions on sphalerite and Pb2+ activated sphalerite in the flotation separation of galena from sphalerite, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2936-2
Research Article

Depression mechanism of sulfite ions on sphalerite and Pb2+ activated sphalerite in the flotation separation of galena from sphalerite

+ Author Affiliations
  • The depression mechanism of sulfite ions on sphalerite and Pb2+ activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight. Therefore, the depression mechanism of sulfite ions on sphalerite and Pb2+ activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated by experiments and density functional theory (DFT) calculations. The X-ray photoelectric spectroscopy (XPS) results, DFT calculation results, and frontier molecular orbital analysis indicated that sulfite ions were difficult to adsorb on sphalerite, suggesting that sulfite ions achieved depression effects on sphalerite through other ways. First, the oxygen content on the surface of sphalerite treated with sulfite ions increased, which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena. Then, sulfite ions were chelated with lead ions to form PbSO3 in solution. The hydrophilic PbSO3 was more easily adsorbed on sphalerite than galena. The interaction between sulfite ions and lead ions can effectively inhibit the activation of sphalerite by lead ions. In addition, the UV spectrum showed that after adding sulfite ions, the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena treated xanthate solution, indicating that xanthate interacts more readily with sulfite ions and oxygen molecules within the sphalerite system, leading to the formation of perxanthate. However, sulfite ions hardly depressed the flotation of galena and could promote the flotation of galena to some extent. This study deepened the understanding of the depression mechanism of sulfite ions on sphalerite and Pb2+ activated sphalerite.
  • loading
  • [1]
    C. Xue and Z.C. Wei, Reaction mechanism and research progress of depressants in sphalerite flotation, Multipurp. Util. Miner. Resour., (2017), No. 3, p. 38.
    [2]
    T.S. Qiu, Q.M. Nie, Y.Q. He, and Q.Z. Yuan, Density functional theory study of cyanide adsorption on the sphalerite (1 1 0) surface, Appl. Surf. Sci., 465(2019), p. 678. doi: 10.1016/j.apsusc.2018.09.020
    [3]
    B. Guo, Y.J. Peng, and R. Espinosa-Gomez, Cyanide chemistry and its effect on mineral flotation, Miner. Eng., 66-68(2014), p. 25. doi: 10.1016/j.mineng.2014.06.010
    [4]
    Y.F. Mu, Y.J. Peng, and R.A. Lauten, The depression of pyrite in selective flotation by different reagent systems–A Literature review, Miner. Eng., 96-97(2016), p. 143. doi: 10.1016/j.mineng.2016.06.018
    [5]
    T.H. Pak, T.C. Sun, C.Y. Xu, and Y.H. Jo, Flotation and surface modification characteristics of galena, sphalerite and pyrite in collecting-depressing-reactivating system, J. Cent. South Univ., 19(2012), No. 6, p. 1702. doi: 10.1007/s11771-012-1196-x
    [6]
    P. Clarke, P. Arora, D. Fornasiero, J. Ralston, and R.S.C. Smart, Separation of chalcopyrite or galena from sphalerite: A flotation and X-ray photoelectron spectroscopic study, [in] S.P. Mehrotra, ed., Mineral Processing : Recent Advances and Future Trends, Allied Publishers Limited New Delhi, New Delhi, 1995, p. 369.
    [7]
    S.G. Malghan, Role of sodium sulfide in the flotation of oxidized copper, lead, and zinc ores, Min. Metall. Explor., 3(1986), No. 3, p. 158.
    [8]
    V.A. Bocharov, V.A. Ignatkina, and A.A. Kayumov, Rational separation of complex copper–zinc concentrates of sulfide ore, J. Min. Sci., 52(2016), No. 4, p. 793. doi: 10.1134/S1062739116041202
    [9]
    E. E. Öz, Evaluation of Kosovo-Artana Concentrator Tailings [Dissertation], Middle East Technical University, Ankara, 2011.
    [10]
    L.M. Zhang, J.D. Gao, S.A. Khoso, et al., A reagent scheme for galena/sphalerite flotation separation: Insights from first-principles calculations, Miner. Eng., 167(2021), art. No. 106885. doi: 10.1016/j.mineng.2021.106885
    [11]
    T.N. Khmeleva, J.K. Chapelet, W.M. Skinner, and D.A. Beattie, Depression mechanisms of sodium bisulphite in the xanthate-induced flotation of copper activated sphalerite, Int. J. Miner. Process., 79(2006), No. 1, p. 61. doi: 10.1016/j.minpro.2005.12.001
    [12]
    T.N. Khmeleva, W. Skinner, and D.A. Beattie, Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite, Int. J. Miner. Process., 76(2005), No. 1, p. 43.
    [13]
    W.Z. Shen, D. Fornasiero, and J. Ralston, Flotation of sphalerite and pyrite in the presence of sodium sulfite, Int. J. Miner. Process., 63(2001), No. 1, p. 17. doi: 10.1016/S0301-7516(00)00067-3
    [14]
    T.N. Khmeleva, W. Skinner, D.A. Beattie, and T.V. Georgiev, The effect of sulphite on the xanthate-induced flotation of copper-activated pyrite, Physicochem. Probl. Miner. Process., 36(2002), p. 185.
    [15]
    S.R. Grano, C.A. Prestidge, and J. Ralston, Sulphite modification of galena surfaces and its effect on flotation and xanthate adsorption, Int. J. Miner. Process., 52(1997), No. 1, p. 1. doi: 10.1016/S0301-7516(97)00049-5
    [16]
    J. Gustafsson, Visual MINTEQ Rev. 3.1, 2007.
    [17]
    Z.C. Pan, Z.C. Liu, J.J. Xiong, et al., Application and depression mechanism of sodium sulfite on galena–pyrite mixed concentrate flotation separation: Huize lead–zinc mine, China, as an example, Miner. Eng., 185(2022), art. No. 107696. doi: 10.1016/j.mineng.2022.107696
    [18]
    M.D. Segall, P.J.D. Lindan, M.J. Probert, et al., First-principles simulation: Ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter, 14(2002), No. 11, p. 2717. doi: 10.1088/0953-8984/14/11/301
    [19]
    J.P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B: Condens. Matter, 54(1996), No. 23, p. 16533. doi: 10.1103/PhysRevB.54.16533
    [20]
    Y.J. Luo, L.M. Ou, J.H. Chen, et al., Hydration mechanisms of smithsonite from DFT-D calculations and MD simulations, Int. J. Min. Sci. Technol., 32(2022), No. 3, p. 605. doi: 10.1016/j.ijmst.2022.01.009
    [21]
    T. Bučko, S. Lebègue, J. Hafner, and J.G. Ángyán, Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids, Phys. Rev. B, 87(2013), No. 6, art. No. 064110. doi: 10.1103/PhysRevB.87.064110
    [22]
    K. Wright, G.W. Watson, S.C. Parker, and D.J. Vaughan, Simulation of the structure and stability of sphalerite (ZnS) surfaces, Am. Mineral., 83(1998), No. 1-2, p. 141. doi: 10.2138/am-1998-1-214
    [23]
    J.H. Chen, Y. Chen, and Y.Q. Li, Effect of vacancy defects on electronic properties and activation of sphalerite (110) surface by first-principles, Trans. Nonferrous Met. Soc. China, 20(2010), No. 3, p. 502. doi: 10.1016/S1003-6326(09)60169-2
    [24]
    H.M. Steele, K. Wright, and I.H. Hillier, A quantum-mechanical study of the (110) surface of sphalerite (ZnS) and its interaction with Pb2+ species, Phys. Chem. Miner., 30(2003), No. 2, p. 69. doi: 10.1007/s00269-002-0296-9
    [25]
    J.H. Chen, X.H. Long, and Y. Chen, Comparison of multilayer water adsorption on the hydrophobic galena (PbS) and hydrophilic pyrite (FeS2) surfaces: A DFT study, J. Phys. Chem. C, 118(2014), No. 22, p. 11657. doi: 10.1021/jp5000478
    [26]
    J.A. Tossell and D.J. Vaughan, Electronic structure and the chemical reactivity of the surface of galena, Can. Mineral., 25(1987), No. 3, p. 381.
    [27]
    H.L. Zhang, W. Sun, C.Y. Zhang, J.Y. He, D.X. Chen, and Y.G. Zhu, Adsorption performance and mechanism of the commonly used collectors with oxygen-containing functional group on the ilmenite surface: A DFT study, J. Mol. Liq., 346(2022), art. No. 117829. doi: 10.1016/j.molliq.2021.117829
    [28]
    H.L. Zhang, W. Sun, Y.G. Zhu, J.Y. He, D.X. Chen, and C.Y. Zhang, Effects of the goethite surface hydration microstructure on the adsorption of the collectors dodecylamine and sodium oleate, Langmuir, 37(2021), No. 33, p. 10052. doi: 10.1021/acs.langmuir.1c01265
    [29]
    C.C. Sui, D. Lee, A. Casuge, and J.A. Finch, Comparison of the activation of sphalerite by copper and lead, Min. Metall. Explor., 16(1999), No. 3, p. 53. [30] A.R. Gerson, A.G. Lange, K.E. Prince, and R.S.C. Smart, The mechanism of copper activation of sphalerite, Appl. Surf. Sci., 137(1999), No. 1-4, p. 207.
    [30]
    G.S. Reddy and C.K. Reddy, The chemistry of activation of sphalerite–A review, Miner. Process. Extr. Metall. Rev., 4(1988), No. 1-2, p. 1. doi: 10.1080/08827508808952632
    [31]
    J. Liu, M. Ejtemaei, A.V. Nguyen, S.M. Wen, and Y. Zeng, Surface chemistry of Pb-activated sphalerite, Miner. Eng., 145(2020), art. No. 106058. doi: 10.1016/j.mineng.2019.106058
    [32]
    Z.Y. Zhang, S. Liu, F.Y. Liu, M. Mohamed Mohamed Ahmed, X.Y. Qu, and G.Y. Liu, The flotation separation of sphalerite from pyrite through a novel flotation reagent system of FeCl3–CuSO4-aminotriazolethione, J. Mol. Liq., 345(2022), art. No. 116997. doi: 10.1016/j.molliq.2021.116997
    [33]
    B. Jańczuk, W. Wójcik, A. Zdziennicka, and F. González-Caballero, Components of surface free energy of galena, J. Mater. Sci., 27(1992), No. 23, p. 6447. doi: 10.1007/BF00576297
    [34]
    R. Woods, C.I. Basilio, D.S. Kim, and R.H. Yoon, Chemisorption of ethyl xanthate on copper electrodes, Int. J. Miner. Process., 42(1994), No. 3-4, p. 215. doi: 10.1016/0301-7516(94)90014-0
    [35]
    Z. Wang, Y.L. Qian, L.H. Xu, B. Dai, J.H. Xiao, and K.B. Fu, Selective chalcopyrite flotation from pyrite with glycerine–xanthate as depressant, Miner. Eng., 74(2015), p. 86. doi: 10.1016/j.mineng.2015.01.008
    [36]
    T. Yamamoto, Mechanism of pyrite depression by sulfite in the presence of sphalerite, Complex Sulphide Ores, (1980).
    [37]
    S.R. Grano, C.A. Prestidge, and J. Ralston, Solution interaction of ethyl xanthate and sulphite and its effect on galena flotation and xanthate adsorption, Int. J. Miner. Process., 52(1997), No. 2-3, p. 161. doi: 10.1016/S0301-7516(97)00066-5
    [38]
    Y.H. Zhang, Z. Cao, Y.D. Cao, and C.Y. Sun, FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces, J. Mol. Struct., 1048(2013), p. 434. doi: 10.1016/j.molstruc.2013.06.015
    [39]
    W.X. Huang, R.H. Liu, F. Jiang, H.H. Tang, L. Wang, and W. Sun, Adsorption mechanism of 3-mercaptopropionic acid as a chalcopyrite depressant in chalcopyrite and galena separation flotation, Colloids Surf. A, 641(2022), art. No. 128063. doi: 10.1016/j.colsurfa.2021.128063
    [40]
    Z.B. Deng, W.L. Cheng, Y. Tang, X. Tong, and Z.H. Liu, Adsorption mechanism of copper xanthate on pyrite surfaces, Physicochem. Probl. Miner. Process., 57(2021), No. 3, p. 46. doi: 10.37190/ppmp/135131
    [41]
    K.L. Zhao, W. Yan, X.H. Wang, B. Hui, G.H. Gu, and H. Wang, The flotation separation of pyrite from pyrophyllite using oxidized guar gum as depressant, Int. J. Miner. Process., 161(2017), p. 78. doi: 10.1016/j.minpro.2017.02.015
    [42]
    U. Becker and M.F. Hochella, The calculation of STM images, STS spectra, and XPS peak shifts for galena: New tools for understanding mineral surface chemistry, Geochim. Cosmochim. Acta, 60(1996), No. 13, p. 2413. doi: 10.1016/0016-7037(96)00094-4
    [43]
    H.Y. Xie, Y.H. Liu, B. Rao, et al., Selective passivation behavior of galena surface by sulfuric acid and a novel flotation separation method for copper–lead sulfide ore without collector and inhibitor, Sep. Purif. Technol., 267(2021), art. No. 118621. doi: 10.1016/j.seppur.2021.118621
    [44]
    S. Yagi, M. Nambu, C. Tsukada, et al., Spectral studies on sulfur poisoning of Pd/Mg6Ni by NEXAFS and XPS, Appl. Surf. Sci., 267(2013), p. 45. doi: 10.1016/j.apsusc.2012.05.098
    [45]
    F. Zhang, W. Sun, H.L. Zhang, et al., Selective adsorption mechanism of zinc ions on the surfaces of galena and sphalerite in the flotation separation of Pb–Zn, JOM, 75(2023), No. 11, p. 4808. doi: 10.1007/s11837-023-06098-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(233) PDF Downloads(28) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return