Xinguang Zhu, Chenxi Ding, Zhe Sui, Hong Su, and Xu Guo, Rock fracture mechanism of buffer blasting with cushion layer at the borehole bottom, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2941-5
Cite this article as:
Xinguang Zhu, Chenxi Ding, Zhe Sui, Hong Su, and Xu Guo, Rock fracture mechanism of buffer blasting with cushion layer at the borehole bottom, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2941-5
Research Article

Rock fracture mechanism of buffer blasting with cushion layer at the borehole bottomRock fracture mechanism of buffer blasting with cushion layer at the borehole bottom

+ Author Affiliations
  • Received: 27 February 2024Revised: 9 May 2024Accepted: 22 May 2024Available online: 23 May 2024
  • This study primarily investigates the rock fracture mechanism of bottom cushion layer blasting and explores the effects of the bottom cushion layer on rock fragmentation. It involves analyses of the evolution patterns of blasting stress, characteristics of crack distribution, and rock fracture features in the specimens. First, blasting model experiments were carried out using the dynamic caustics principle to investigate the influence of bottom cushion layers and initiation methods on the integrity of the bottom rock mass. The experimental results indicate that the combined use of bottom cushion layers and inverse initiation effectively protects the integrity of the bottom rock mass. Subsequently, the process of stress wave propagation and dynamic crack propagation in rocks was simulated using the continuum–discontinuum element method (CDEM) and the Landau explosion source model, with varying thicknesses of bottom cushion layers. The numerical simulation results indicate that with increasing cushion thickness, the absorption of energy generated by the explosion becomes more pronounced, resulting in fewer cracks in the bottom rock mass. This illustrates the positive role of the cushion layer in protecting the integrity of the bottom rock mass.
  • loading
  • [1]
    Z.X. Zhang, J.A. Sanchidrián, F. Ouchterlony, and S. Luukkanen, Reduction of fragment size from mining to mineral processing: A review, Rock Mech. Rock Eng., 56(2023), No. 1, p. 747. doi: 10.1007/s00603-022-03068-3
    [2]
    P. Xu, R.S. Yang, J.J. Zuo, et al., Research progress of the fundamental theory and technology of rock blasting, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 705. doi: 10.1007/s12613-022-2464-x
    [3]
    F.Y. Ren, T.A.M. Sow, R.X. He, and X.R. Liu, Optimization and application of blasting parameters based on the “pushing-wall” mechanism, Int. J. Miner. Metall. Mater., 19(2012), No. 10, p. 879. doi: 10.1007/s12613-012-0642-y
    [4]
    H.J. Wu, M. Gong, R.S. Yang, X.D. Wu, and X.Y. Liu, Double-face intelligent hole position planning method for precision blasting in roadways using a computer-controlled drill jumbo, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p.1025. doi: 10.1007/s12613-022-2575-4
    [5]
    Z.G. Yao, Q.F. Tian, Y. Fang, L.B. Ye, S. Pu, and X.F. Fang, Propagation and attenuation of blast vibration waves in closely spaced tunnels: A case study, Arabian J. Sci. Eng., 47(2022), No. 4, p. 4239. doi: 10.1007/s13369-021-05959-z
    [6]
    N. Kumar Bhagat, A.K. Mishra, R.K. Singh, C. Sawmliana, and P.K. Singh, Application of logistic regression, CART and random forest techniques in prediction of blast-induced slope failure during reconstruction of railway rock-cut slopes, Eng. Fail. Anal., 137(2022), art. No. 106230. doi: 10.1016/j.engfailanal.2022.106230
    [7]
    X.X. Wu, Y.G. Hu, M.S. Liu, G. Zhao, and Z.W. Yang, Research progress of blasting technology in hydropower engineering, J. Changjiang River Sci.c Res. Inst., 38(2021), No. 10, p. 112.
    [8]
    J.S. Zhao, B.R. Chen, Q. Jiang, et al., Microseismic monitoring of rock mass fracture response to blasting excavation of large underground Caverns under high geostress, Rock Mech. Rock Eng., 55(2022), No. 2, p. 733. doi: 10.1007/s00603-021-02709-3
    [9]
    C.X. Ding, R.S. Yang, C. Chen, X.G. Zhu, C. Feng, and Q.M. Xie, Space-time effect of blasting stress wave and blasting gas on rock fracture based on a cavity charge structure, Int. J. Rock Mech. Min. Sci., 160(2022), art. No. 105238. doi: 10.1016/j.ijrmms.2022.105238
    [10]
    T. Wang, W.W. Ye, L.Y. Liu, K. Liu, N.S. Jiang, and X.H. Feng, Disturbance failure mechanism of highly stressed rock in deep excavation: Current status and prospects, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 611. doi: 10.1007/s12613-024-2864-1
    [11]
    R.S. Yang, C.X. Ding, L.Y. Yang, Z. Lei, Z.R. Zhang, and Y.B. Wang, Visualizing the blast-induced stress wave and blasting gas action effects using digital image correlation, Int. J. Rock Mech. Min. Sci., 112(2018), p. 47. doi: 10.1016/j.ijrmms.2018.10.007
    [12]
    X.T. Liang, C.X. Ding, X.G. Zhu, J. Zhou, C. Chen, and X. Guo, Visualization study on stress evolution and crack propagation of jointed rock mass under blasting load, Eng. Fract. Mech., 296(2024), art. No. 109833. doi: 10.1016/j.engfracmech.2023.109833
    [13]
    R.S. Yang, J.J. Zuo, L.W. Ma, Y. Zhao, Z. Liu, and Q.M. Xie, Analysis of explosion wave interactions and rock breaking effects during dual initiation, Int. J. Miner. Metall. Mater., 31(2024), No. 8, p. 1788. doi: 10.1007/s12613-024-2830-y
    [14]
    C.X. Ding, R.S. Yang, X. Guo, Z. Sui, C.L. Xiao, and L.Y. Yang, Effects of the initiation position on the damage and fracture characteristics of linear-charge blasting in rock, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 443. doi: 10.1007/s12613-023-2765-8
    [15]
    X.D. Li, K.W. Liu, Y.Y. Sha, J.C. Yang, and R.T. Song, Numerical investigation on rock fragmentation under decoupled charge blasting, Comput. Geotech., 157(2023), art. No. 105312. doi: 10.1016/j.compgeo.2023.105312
    [16]
    X.M. Lou, P. Zhou, J. Yu, and M.W. Sun, Analysis on the impact pressure on blast hole wall with radial air-decked charge based on shock tube theory, Soil Dyn. Earthquake Eng., 128(2020), art. No. 105905. doi: 10.1016/j.soildyn.2019.105905
    [17]
    X.D. Wu, M. Gong, H.J. Wu, G.F. Hu, and S.J. Wang, Vibration reduction technology and the mechanisms of surrounding rock damage from blasting in neighborhood tunnels with small clearance, Int. J. Min. Sci. Technol., 33(2023), No. 5, p. 625. doi: 10.1016/j.ijmst.2022.10.009
    [18]
    G.X. Liu, W.B. Lu, X.Q. Niu, G.H. Wang, M. Chen, and P. Yan, Excavation shaping and damage control technique for the breccia lava dam foundation at the Bai-he-tan hydropower station: A case study, Rock Mech. Rock Eng., 53(2020), No. 4, p. 1889. doi: 10.1007/s00603-019-02013-1
    [19]
    L. Huang, Study on the Pliability Cushion Explosion Method and Effectively of the Protected Level of Dam Foundation Rock ’ Excavating, Wuhan University of Technology, Wuhan, 2002.
    [20]
    Y.Z. Zhang, W.B. Lu, M. Chen, P. Yan, and Y.G. Hu, Dam foundation excavation techniques in China: A review, J. Rock Mech. Geotech. Eng., 5(2013), No. 6, p. 460. doi: 10.1016/j.jrmge.2013.08.002
    [21]
    X.X. Wu, G. Zhao, Z.Y. Zhang, et al., A study of the theory of duplicate cushion and its optimized design by comupter, Explos. Mater., 4(2000), No. 4, p. 8.
    [22]
    H.R. Hu, W.B. Lu, P. Yan, M. Chen, and Q. Gao, A vibration-isolating blast technique with shock-reflection device for dam foundation excavation in complicated geological conditions, Shock Vib., 2018(2018), No. 1, art. No. 8029513. doi: 10.1155/2018/8029513
    [23]
    H.R. Hu, W.B. Lu, P. Yan, M. Chen, Q.D. Gao, and Z.W. Yang, A new horizontal rock dam foundation blasting technique with a shock-reflection device arranged at the bottom of vertical borehole, Eur. J. Environ. Civ. Eng., 24(2020), No. 4, p. 481. doi: 10.1080/19648189.2017.1399168
    [24]
    W.B. Lu, H.R. Hu, P. Yan, Y. Chen, Y.J. Rong, and Z.L. Wang, Vertical borehole shock-reflection blasting technique and its application in foundation excavation, Chin. J. Rock Mech. Eng., 37(2018), No. S1, p. 3143.
    [25]
    H.K. Kutter and C. Fairhurst, On the fracture process in blasting, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 8(1971), No. 3, p. 181. doi: 10.1016/0148-9062(71)90018-0
    [26]
    H.P. Rossmanith, Mechanics of Jointed and Faulted Rock, Routledge, London, 1998.
    [27]
    C.X. Ding, R.S. Yang, and L.Y. Yang, Experimental results of blast-induced cracking fractal characteristics and propagation behavior in deep rock mass, Int. J. Rock Mech. Min. Sci., 142(2021), art. No. 104772. doi: 10.1016/j.ijrmms.2021.104772
    [28]
    R.S. Yang, C.X. Ding, L.Y. Yang, and C. Chen, Model experiment on dynamic behavior of jointed rock mass under blasting at high-stress conditions, Tunnelling Underground Space Technol., 74(2018), p. 145. doi: 10.1016/j.tust.2018.01.017
    [29]
    S.H. Li, M.H. Zhao, Y.N. Wang, and Y. Rao, A new numerical method for Dem–Block and particle model, Int. J. Rock Mech. Min. Sci., 41(2004), No. S1, p. 414.
    [30]
    C. Feng, S.H. Li, X.Y. Liu, and Y.N. Zhang, A semi-spring and semi-edge combined contact model in CDEM and its application to analysis of Jiweishan landslide, J. Rock Mech. Geotech. Eng., 6(2014), No. 1, p. 26. doi: 10.1016/j.jrmge.2013.12.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(240) PDF Downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return