Haibin Liu, Run Hou, Chenghao Wu, Ruishan Xie,  and Shujun Chen, Multi-layer multi-pass friction rolling additive manufacturing of Al alloy: Toward complex large-scale high-performance components, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2945-1
Cite this article as:
Haibin Liu, Run Hou, Chenghao Wu, Ruishan Xie,  and Shujun Chen, Multi-layer multi-pass friction rolling additive manufacturing of Al alloy: Toward complex large-scale high-performance components, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2945-1
Research Article

Multi-layer multi-pass friction rolling additive manufacturing of Al alloy: Toward complex large-scale high-performance components

+ Author Affiliations
  • Corresponding author:

    Ruishan Xie    E-mail: xiers@bjut.edu.cn

  • Received: 31 January 2024Revised: 22 May 2024Accepted: 27 May 2024Available online: 28 May 2024
  • At present, the emerging solid-phase friction-based additive manufacturing technology, including friction rolling additive manufacturing (FRAM), can only manufacture simple single-pass components. In this study, multi-layer multi-pass FRAM-deposited aluminum alloy samples were successfully prepared using a non-shoulder tool head. The material flow behavior and microstructure of the overlapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys. The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adjacent passes in the overlapped center area. Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone, which made the recrystallization degree in the left and right edge zones of the overlapped zone the highest, followed by the overlapped center zone and the non-overlapped zone. The tensile strength of the overlapped zone exceeded 90% of that of the single-pass deposition sample. It is proved that although there are uneven grooves on the surface of the overlapping area during multi-layer and multi-pass deposition, they can be filled by the flow of materials during the deposition of the next layer, thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area. The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components.
  • loading
  • [1]
    T. Prater, Friction stir welding of metal matrix composites for use in aerospace structures, Acta Astronaut., 93(2014), p. 366. doi: 10.1016/j.actaastro.2013.07.023
    [2]
    Z.G. Luo, X. Zhang, Z.S. Liu, H.Y. Zhou, M.K. Wang, and G.M. Xie, Mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hot-roll bonding, Int. J. Miner. Metall. Mater., 31(2024), No. 8, p.1890 doi: 10.1007/s12613-023-2801-8
    [3]
    O. Engler and S. Miller-Jupp, Control of second-phase particles in the Al–Mg–Mn alloy AA 5083, J. Alloys Compd., 689(2016), p. 998. doi: 10.1016/j.jallcom.2016.08.070
    [4]
    D.H. Ding, Z.X. Pan, D. Cuiuri, and H.J. Li, Wire-feed additive manufacturing of metal components: Technologies, developments and future interests, Int. J. Adv. Manuf. Technol., 81(2015), No. 1, p. 465.
    [5]
    H.J. Zong, N. Kang, Z.H. Qin, and M.E. Mansori, A review on the multi-scaled structures and mechanical/thermal properties of tool steels fabricated by laser powder bed fusion additive manufacturing, Int. J. Miner. Metall. Mater., 31(2024), No. 5, p. 1048. doi: 10.1007/s12613-023-2731-5
    [6]
    D. Jafari, T.H.J. Vaneker, and I. Gibson, Wire and arc additive manufacturing: Opportunities and challenges to control the quality and accuracy of manufactured parts, Mater. Des., 202(2021), art. No. 109471. doi: 10.1016/j.matdes.2021.109471
    [7]
    L.Z. Wu, Zhang, D.F. Khan, et al., Unveiling the cellular microstructure–property relations in martensitic stainless steel via laser powder bed fusion, Int. J. Miner. Metall. Mater., 31(2024), No. 11, p. 2476. doi: 10.1007/s12613-024-2947-z
    [8]
    X.J. Cui, E.Y. Qi, Z.G. Sun, C.B. Jia, Y. Zeng, and S.K. Wu, Wire oscillating laser additive manufacturing of 2319 aluminum alloy: Optimization of process parameters, microstructure, and mechanical properties, Chin. J. Mech. Eng. Addit. Manuf. Front., 1(2022), No. 3, art. No. 100035.
    [9]
    H. Mirzadeh, Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1278 doi: 10.1007/s12613-022-2589-y
    [10]
    Y.J. Shen, J.J. Wang, B.B. Wang, et al., Strengthening strategy for high-performance friction stir lap welded joints based on 5083 Al alloy, Int. J. Miner. Metall. Mater., 31(2024), No. 11, p. 2498 doi: 10.1007/s12613-024-2847-2
    [11]
    M. Elyasi, D. Khoram, H. Aghajani Derazkola, and M.J. Mirnia, Effects of process parameters on properties of friction stir additive manufactured copper, Int. J. Adv. Manuf. Technol., 127(2023), No. 11, p. 5651.
    [12]
    D. Garcia, W.D. Hartley, H.A. Rauch, et al. , In situ investigation into temperature evolution and heat generation during additive friction stir deposition: A comparative study of Cu and Al–Mg–Si, Addit. Manuf., 34(2020), art. No. 101386.
    [13]
    F.C. Liu, P.S. Dong, A.S. Khan, et al., 3D printing of fine-grained aluminum alloys through extrusion-based additive manufacturing: Microstructure and property characterization, J. Mater. Sci. Technol., 139(2023), p. 126. doi: 10.1016/j.jmst.2022.08.017
    [14]
    W.S. Tang, X.Q. Yang, C.B. Tian, and Y.S. Xu, Microstructural heterogeneity and bonding strength of planar interface formed in additive manufacturing of Al−Mg−Si alloy based on friction and extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1755. doi: 10.1007/s12613-022-2506-4
    [15]
    H. Wang, Y. Li, M. Zhang, W. Gong, R.L. Lai, and Y.P. Li, Preheating-assisted solid-state friction stir repair of Al–Mg–Si alloy plate at different rotational speeds, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 725. doi: 10.1007/s12613-023-2772-9
    [16]
    H.Z. Chen, X.C. Meng, J.L. Chen, et al., Wire-based friction stir additive manufacturing, Addit. Manuf., 70(2023), art. No. 103557.
    [17]
    B. Chaudhary, N.K. Jain, J. Murugesan, and V. Patel, Friction stir powder additive manufacturing of Al6061 alloy: Enhancing microstructure and mechanical properties by reducing thermal gradient, J. Mater. Res. Technol., 26(2023), p. 1168. doi: 10.1016/j.jmrt.2023.07.270
    [18]
    H. Aghajani Derazkola, F. Khodabakhshi, and A.P. Gerlich, Friction-forging tubular additive manufacturing (FFTAM): A new route of solid-state layer-upon-layer metal deposition, J. Mater. Res. Technol., 9(2020), No. 6, p. 15273. doi: 10.1016/j.jmrt.2020.10.105
    [19]
    R.S. Xie, Y.C. Shi, H.B. Liu, and S.J. Chen, A novel friction and rolling based solid-state additive manufacturing method: Microstructure and mechanical properties evaluation, Mater. Today Commun., 29(2021), art. No. 103005. doi: 10.1016/j.mtcomm.2021.103005
    [20]
    N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa, Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process, Scripta Mater., 40(1999), No. 7, p. 795. doi: 10.1016/S1359-6462(99)00015-9
    [21]
    R.S. Xie, T.S. Liang, Y.C. Shi, and H.B. Liu, Revealing the bonding mechanisms between deposit and substrate of the friction rolling additive manufactured hybrid aluminum alloys, Addit. Manuf., 56(2022), art. No. 102942.
    [22]
    R.S. Xie, Y.C. Shi, R. Hou, H.B. Liu, and S.J. Chen, Efficient depositing aluminum alloy using thick strips through severe deformation-based friction rolling additive manufacturing: Processing, microstructure, and mechanical properties, J. Mater. Res. Technol., 24(2023), p. 3788. doi: 10.1016/j.jmrt.2023.04.075
    [23]
    R.S. Xie, X.G. Chen, Y.C. Shi, C.Y. Yang, S.J. Chen, and H.B. Liu, Printing high-strength high-elongation aluminum alloy using commercial ER2319 welding wires through deformation-based additive manufacturing, Mater. Sci. Eng. A, 868(2023), art. No. 144773. doi: 10.1016/j.msea.2023.144773
    [24]
    H.B. Liu, Y.Y. Sun, R.S. Xie, Y.C. Shi, Q.Y. Shi, and S.J. Chen, Continuous repair of groove damages using solid-state friction rolling additive manufacturing method, Sci. Technol. Weld. Joining, 28(2023), No. 2, p. 89. doi: 10.1080/13621718.2022.2117533
    [25]
    B.J. Phillips, C.J.T. Mason, S.C. Beck, et al., Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al–Mg–Si alloy fabricated by additive friction stir deposition, J. Mater. Process. Technol., 295(2021), art. No. 117169. doi: 10.1016/j.jmatprotec.2021.117169
    [26]
    Z. Shen, M. Zhang, D. Li, et al., Microstructure evolution and mechanical properties of single-layer multipass overlapped Al–Mg–Mn–Sc–Zr alloy fabricated via additive friction stir deposition, JOM, 75(2023), No. 10, p. 4242. doi: 10.1007/s11837-023-06057-1
    [27]
    A. Das, T. Medhi, S. Kapil, and P. Biswas, Multi-track multi-layer friction stir additive manufacturing of AA6061-T6 alloy, Prog. Addit. Manuf., (2023), p. 1.
    [28]
    K.J. Al-Fadhalah, A.I. Almazrouee, and A.S. Aloraier, Microstructure and mechanical properties of multi-pass friction stir processed aluminum alloy 6063, Mater. Des., 53(2014), p. 550. doi: 10.1016/j.matdes.2013.07.062
    [29]
    M.M. El-Rayes and E.A. El-Danaf, The influence of multi-pass friction stir processing on the microstructural and mechanical properties of aluminum alloy 6082, J. Mater. Process. Technol., 212(2012), No. 5, p. 1157. doi: 10.1016/j.jmatprotec.2011.12.017
    [30]
    L.E. Murr, G. Liu, and J.C. McClure, Dynamic recrystallization in friction-stir welding of aluminium alloy 1100, J. Mater. Sci. Lett., 16(1997), No. 22, p. 1801. doi: 10.1023/A:1018556332357
    [31]
    Z.Y. Ma, S.R. Sharma, and R.S. Mishra, Effect of multiple-pass friction stir processing on microstructure and tensile properties of a cast aluminum–silicon alloy, Scripta Mater., 54(2006), No. 9, p. 1623. doi: 10.1016/j.scriptamat.2006.01.010
    [32]
    M. Cheepu, C.I. Lee, and S.M. Cho, Microstructural characteristics of wire arc additive manufacturing with inconel 625 by super-TIG welding, Trans. Indian Inst. Met., 73(2020), No. 6, p. 1475. doi: 10.1007/s12666-020-01915-x
    [33]
    R.S. Xie, T.S. Liang, S.J. Chen, and H.B. Liu, In-depth understanding of rotating toolhead-induced heat generation and material flow behavior in friction-rolling additive manufacturing, Addit. Manuf., 67(2023), art. No. 103496.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(309) PDF Downloads(23) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return