Jiaming Liu, Qian Hu, Sandrick Sabola, Yue Zhang, Biao Du,  and Xianzong Wang, Comparative review of corrosion-resistant coatings on metal bipolar plates of proton exchange membrane fuel cells, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2627-2644. https://doi.org/10.1007/s12613-024-2946-0
Cite this article as:
Jiaming Liu, Qian Hu, Sandrick Sabola, Yue Zhang, Biao Du,  and Xianzong Wang, Comparative review of corrosion-resistant coatings on metal bipolar plates of proton exchange membrane fuel cells, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2627-2644. https://doi.org/10.1007/s12613-024-2946-0
Review

Comparative review of corrosion-resistant coatings on metal bipolar plates of proton exchange membrane fuel cells

+ Author Affiliations
  • Corresponding author:

    Xianzong Wang    E-mail: xianzong.wang@nwpu.edu.cn

  • Received: 25 January 2024Revised: 16 May 2024Accepted: 29 May 2024Available online: 30 May 2024
  • In the realm of proton exchange membrane fuel cells (PEMFCs), the bipolar plates (BPs) are indispensable and serve pivotal roles in distributing reactant gases, collecting current, facilitating product water removal, and cooling the stack. Metal BPs, characterized by outstanding manufacturability, cost-effectiveness, higher power density, and mechanical strength, are emerging as viable alternatives to traditional graphite BPs. The foremost challenge for metal BPs lies in enhancing their corrosion resistance and conductivity under acidic conditions, necessitating the application of various coatings on their surfaces to ensure superior performance. This review summarizes and compares recent advancements in the research of eight distinct types of coatings for BPs in PEMFCs, including noble metal, carbide, nitride, and amorphous carbon (a-C)/metal compound composite coatings. The various challenges encountered in the manufacturing and future application of these coatings are also delineated.
  • loading
  • Supplementary Information-s12613-024-2946-0.docx
  • [1]
    K. Jiao, J. Xuan, Q. Du, et al., Designing the next generation of proton-exchange membrane fuel cells, Nature, 595(2021), No. 7867, p. 361. doi: 10.1038/s41586-021-03482-7
    [2]
    G.Y. Liu, F.G. Hou, S.L. Peng, X.D. Wang, and B.Z. Fang, Process and challenges of stainless steel based bipolar plates for proton exchange membrane fuel cells, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1099. doi: 10.1007/s12613-022-2485-5
    [3]
    Y. Wang, D.F. Ruiz Diaz, K.S. Chen, Z. Wang, and X.C. Adroher, Materials, technological status, and fundamentals of PEM fuel cells–A review, Mater. Today, 32(2020), p. 178. doi: 10.1016/j.mattod.2019.06.005
    [4]
    Z.T. Xu, D.K. Qiu, P.Y. Yi, L.F. Peng, and X.M. Lai, Towards mass applications: A review on the challenges and developments in metallic bipolar plates for PEMFC, Prog. Nat. Sci. Mater. Int., 30(2020), No. 6, p. 815. doi: 10.1016/j.pnsc.2020.10.015
    [5]
    R. Włodarczyk, Corrosion analysis of graphite sinter as bipolar plates in the low-temperature PEM fuel cell simulated environments, J. Solid State Electrochem., 26(2022), No. 1, p. 39. doi: 10.1007/s10008-021-05015-8
    [6]
    S. Simaafrookhteh, M. Khorshidian, and M. Momenifar, Fabrication of multi-filler thermoset-based composite bipolar plates for PEMFCs applications: Molding defects and properties characterizations, Int. J. Hydrogen Energy, 45(2020), No. 27, p. 14119. doi: 10.1016/j.ijhydene.2020.03.105
    [7]
    X.B. Li, L.F. Peng, D. Zhang, P.Y. Yi, and X.M. Lai, The frequency of pulsed DC sputtering power introducing the graphitization and the durability improvement of amorphous carbon films for metallic bipolar plates in proton exchange membrane fuel cells, J. Power Sources, 466(2020), art. No. 228346. doi: 10.1016/j.jpowsour.2020.228346
    [8]
    A.P. Pitchiya, N.T. Le, Z.A. Putnam, M. Harrington, and S. Krishnan, Microporous graphite composites of tailorable porosity, surface wettability, and water permeability for fuel cell bipolar plates, Ind. Eng. Chem. Res., 60(2021), No. 28, p. 10203. doi: 10.1021/acs.iecr.1c01737
    [9]
    H.E. Lee, Y.S. Chung, and S.S. Kim, Feasibility study on carbon-felt-reinforced thermoplastic composite materials for PEMFC bipolar plates, Compos. Struct., 180(2017), p. 378. doi: 10.1016/j.compstruct.2017.08.037
    [10]
    X.Z. Wang, C.P. Ye, D.D. Shi, H.Q. Fan, and Q. Li, Potential polarization accelerated degradation of interfacial electrical conductivity for Au/TiN coated 316L SS bipolar plates used in polymer electrolyte membrane fuel cells, Corros. Sci., 189(2021), art. No. 109624. doi: 10.1016/j.corsci.2021.109624
    [11]
    L.X. Yang, R.J. Liu, Y. Wang, H.J. Liu, C.L. Zeng, and C. Fu, Growth of nanocrystalline β-Nb2N coating on 430 ferritic stainless steel bipolar plates of PEMFCs by disproportionation reaction of Nb(IV) ions in molten salt, Corros. Sci., 174(2020), art. No. 108862. doi: 10.1016/j.corsci.2020.108862
    [12]
    Z.T. Xu, Z.P. Li, R. Zhang, T.H. Jiang, and L.F. Peng, Fabrication of micro channels for titanium PEMFC bipolar plates by multistage forming process, Int. J. Hydrogen Energy, 46(2021), No. 19, p. 11092. doi: 10.1016/j.ijhydene.2020.07.230
    [13]
    N.F. Asri, T. Husaini, A.B. Sulong, E.H. Majlan, and W.R.W. Daud, Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review, Int. J. Hydrogen Energy, 42(2017), No. 14, p. 9135. doi: 10.1016/j.ijhydene.2016.06.241
    [14]
    Y.W. Zeng, Z.H. He, Q.H. Hua, Q.J. Xu, and Y.L. Min, Polyacrylonitrile infused in a modified honeycomb aluminum alloy bipolar plate and its acid corrosion resistance, ACS Omega, 5(2020), No. 27, p. 16976. doi: 10.1021/acsomega.0c02742
    [15]
    Y. Sim, J. Kwak, S.Y. Kim, et al., Formation of 3D graphene–Ni foam heterostructures with enhanced performance and durability for bipolar plates in a polymer electrolyte membrane fuel cell, J. Mater. Chem. A, 6(2018), No. 4, p. 1504. doi: 10.1039/C7TA07598G
    [16]
    T. Wilberforce, O. Ijaodola, E. Ogungbemi, et al., Technical evaluation of proton exchange membrane (PEM) fuel cell performance–A review of the effects of bipolar plates coating, Renewable Sustainable Energy Rev., 113(2019), art. No. 109286. doi: 10.1016/j.rser.2019.109286
    [17]
    F. Madadi, A. Rezaeian, H. Edris, and M. Zhiani, Improving performance in PEMFC by applying different coatings to metallic bipolar plates, Mater. Chem. Phys., 238(2019), art. No. 121911. doi: 10.1016/j.matchemphys.2019.121911
    [18]
    L. Jiang, J.A. Syed, H.B. Lu, and X.K. Meng, In-situ electrodeposition of conductive polypyrrole–graphene oxide composite coating for corrosion protection of 304SS bipolar plates, J. Alloys Compd., 770(2019), p. 35. doi: 10.1016/j.jallcom.2018.07.277
    [19]
    S. Liu, T.J. Pan, R.F. Wang, Y. Yue, and J. Shen, Anti-corrosion and conductivity of the electrodeposited graphene/polypyrrole composite coating for metallic bipolar plates, Prog. Org. Coat., 136(2019), art. No. 105237. doi: 10.1016/j.porgcoat.2019.105237
    [20]
    Z.H. Chen, G.H. Zhang, W.Z. Yang, et al., Superior conducting polypyrrole anti-corrosion coating containing functionalized carbon powders for 304 stainless steel bipolar plates in proton exchange membrane fuel cells, Chem. Eng. J., 393(2020), art. No. 124675. doi: 10.1016/j.cej.2020.124675
    [21]
    S. Akula, P. Kalaiselvi, A.K. Sahu, and S. Chellammal, Electrodeposition of conductive PAMT/PPY bilayer composite coatings on 316L stainless steel plate for PEMFC application, Int. J. Hydrogen Energy, 46(2021), No. 34, p. 17909. doi: 10.1016/j.ijhydene.2021.02.196
    [22]
    S. Joseph, J.C. McClure, P.J. Sebastian, J. Moreira, and E. Valenzuela, Polyaniline and polypyrrole coatings on aluminum for PEM fuel cell bipolar plates, J. Power Sources, 177(2008), No. 1, p. 161. doi: 10.1016/j.jpowsour.2007.09.113
    [23]
    L.J. Yang, H.J. Yu, L.J. Jiang, L. Zhu, X.Y. Jian, and Z. Wang, Graphite–polypyrrole coated 316L stainless steel as bipolar plates for proton exchange membrane fuel cells, Int. J. Miner. Metall. Mater., 18(2011), No. 1, p. 53. doi: 10.1007/s12613-011-0399-8
    [24]
    Y.L. Wang, S.H. Zhang, P. Wang, Z.X. Lu, S.B. Chen, and L.S. Wang, Synthesis and corrosion protection of Nb doped TiO2 nanopowders modified polyaniline coating on 316 stainless steel bipolar plates for proton-exchange membrane fuel cells, Prog. Org. Coat., 137(2019), art. No. 105327. doi: 10.1016/j.porgcoat.2019.105327
    [25]
    Y.L. Wang, S.H. Zhang, P. Wang, S.B. Chen, Z.X. Lu, and W.H. Li, Electropolymerization and corrosion protection performance of the Nb: TiO2 nanofibers/polyaniline composite coating, J. Taiwan Inst. Chem. Eng., 103(2019), p. 190. doi: 10.1016/j.jtice.2019.07.015
    [26]
    M. Ates and E. Topkaya, Nanocomposite film formations of polyaniline via TiO2, Ag, and Zn, and their corrosion protection properties, Prog. Org. Coat., 82(2015), p. 33. doi: 10.1016/j.porgcoat.2015.01.014
    [27]
    M.A. Deyab, Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell, J. Power Sources, 268(2014), p. 50. doi: 10.1016/j.jpowsour.2014.06.021
    [28]
    N.D. Nam, J.G. Kim, Y.J. Lee, and Y.K. Son, Effect of thermal treatment on the corrosion resistance of polyaniline in H2SO4–HF acid mixture solution, Corros. Sci., 51(2009), No. 12, p. 3007. doi: 10.1016/j.corsci.2009.08.034
    [29]
    K.J. Lin, X.Y. Li, H.S. Dong, et al., Surface modification of 316 stainless steel with platinum for the application of bipolar plates in high performance proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 42(2017), No. 4, p. 2338. doi: 10.1016/j.ijhydene.2016.09.220
    [30]
    W.M. Yan, C.Y. Chen, and C.H. Liang, Comparison of performance degradation of high temperature PEM fuel cells with different bipolar plates, Energy, 186(2019), art. No. 115836. doi: 10.1016/j.energy.2019.07.166
    [31]
    F.Y. Yan, B.L. Jiang, Z.Y. Wang, et al., Thermal stabilization of nanocrystalline promoting conductive corrosion resistance of TiN–Ag films for metal bipolar plates, Vacuum, 195(2022), art. No. 110631. doi: 10.1016/j.vacuum.2021.110631
    [32]
    D. Zhang, P.Y. Yi, L.F. Peng, X.M. Lai, and J.B. Pu, Amorphous carbon films doped with silver and chromium to achieve ultra-low interfacial electrical resistance and long-term durability in the application of proton exchange membrane fuel cells, Carbon, 145(2019), p. 333. doi: 10.1016/j.carbon.2019.01.050
    [33]
    M. Liu, H.F. Xu, J. Fu, and Y. Tian, Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates, Int. J. Miner. Metall. Mater., 23(2016), No. 7, p. 844. doi: 10.1007/s12613-016-1299-8
    [34]
    T. Fukutsuka, T. Yamaguchi, S.I. Miyano, Y. Matsuo, Y. Sugie, and Z. Ogumi, Carbon-coated stainless steel as PEFC bipolar plate material, J. Power Sources, 174(2007), No. 1, p. 199. doi: 10.1016/j.jpowsour.2007.08.096
    [35]
    A. Afshar, M. Yari, M.M. Larijani, and M. Eshghabadi, Effect of substrate temperature on structural properties and corrosion resistance of carbon thin films used as bipolar plates in polymer electrolyte membrane fuel cells, J. Alloys Compd., 502(2010), No. 2, p. 451. doi: 10.1016/j.jallcom.2010.04.194
    [36]
    H. Li, P. Guo, D. Zhang, et al., Interface-induced degradation of amorphous carbon films/stainless steel bipolar plates in proton exchange membrane fuel cells, J. Power Sources, 469(2020), art. No. 228269. doi: 10.1016/j.jpowsour.2020.228269
    [37]
    W.L. Wang, S.M. He, and C.H. Lan, Protective graphite coating on metallic bipolar plates for PEMFC applications, Electrochim. Acta, 62(2012), p. 30. doi: 10.1016/j.electacta.2011.11.026
    [38]
    L.X. Li, D.H. Ye, Y. Xiang, and W. Guo, Effect of deposition temperature on columnar structure of α-C nano-coatings of PEMFC metal bipolar plates, Int. J. Electrochem. Sci., 18(2023), No. 7, art. No. 100188. doi: 10.1016/j.ijoes.2023.100188
    [39]
    I. Alaefour, S. Shahgaldi, J. Zhao, and X.G. Li, Synthesis and Ex-situ characterizations of diamond-like carbon coatings for metallic bipolar plates in PEM fuel cells, Int. J. Hydrogen Energy, 46(2021), No. 19, p. 11059. doi: 10.1016/j.ijhydene.2020.09.259
    [40]
    P.Y. Yi, W.X. Zhang, F.F. Bi, L.F. Peng, and X.M. Lai, Microstructure and properties of a-C films deposited under different argon flow rate on stainless steel bipolar plates for proton exchange membrane fuel cells, J. Power Sources, 410(2019), p. 188.
    [41]
    W. Li, L.T. Liu, Z.X. Li, Y.F. Wang, H.Z. Li, and J.J. Lei, Corrosion resistance and conductivity of amorphous carbon coated SS316L and TA2 bipolar plates in proton-exchange membrane fuel cells, Diamond Relat. Mater., 118(2021), art. No. 108503. doi: 10.1016/j.diamond.2021.108503
    [42]
    J. Jin, X.L. Kou, X. Tian, et al., Investigation of corrosion protection with conductive chromium–aluminum carbonitride coating on metallic bipolar plates, Vacuum, 213(2023), art. No. 112084. doi: 10.1016/j.vacuum.2023.112084
    [43]
    L. Wang, Y.K. Tao, Z. Zhang, et al., Molybdenum carbide coated 316L stainless steel for bipolar plates of proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 44(2019), No. 10, p. 4940. doi: 10.1016/j.ijhydene.2018.12.184
    [44]
    Y. Zhao, L. Wei, P.Y. Yi, and L.F. Peng, Influence of Cr–C film composition on electrical and corrosion properties of 316L stainless steel as bipolar plates for PEMFCs, Int. J. Hydrogen Energy, 41(2016), No. 2, p. 1142. doi: 10.1016/j.ijhydene.2015.10.047
    [45]
    K. Hou, P.Y. Yi, X.B. Li, L.F. Peng, and X.M. Lai, The effect of Cr doped in amorphous carbon films on electrical conductivity: Characterization and mechanism, Int. J. Hydrogen Energy, 46(2021), No. 60, p. 30841. doi: 10.1016/j.ijhydene.2021.06.051
    [46]
    J.L. Lu, N. Abbas, J.N. Tang, J. Tang, and G.M. Zhu, Synthesis and characterization of conductive ceramic MAX-phase coatings for metal bipolar plates in simulated PEMFC environments, Corros. Sci., 158(2019), art. No. 108106. doi: 10.1016/j.corsci.2019.108106
    [47]
    G.S. Ma, D. Zhang, P. Guo, et al., Phase orientation improved the corrosion resistance and conductivity of Cr2AlC coatings for metal bipolar plates, J. Mater. Sci. Technol., 105(2022), p. 36. doi: 10.1016/j.jmst.2021.06.069
    [48]
    H.B. Zhang, K. Jiang, Y. Qiu, et al., Electrochemical properties of niobium and niobium compounds modified AISI430 stainless steel as bipolar plates for DFAFC, Surf. Eng., 35(2019), No. 11, p. 1003. doi: 10.1080/02670844.2019.1611707
    [49]
    T. Taner, S.A.H. Naqvi, and M. Ozkaymak, Techno-economic analysis of a more efficient hydrogen generation system prototype: A case study of PEM electrolyzer with Cr–C coated SS304 bipolar plates, Fuel Cells, 19(2019), No. 1, p. 19. doi: 10.1002/fuce.201700225
    [50]
    J. Bi, J.M. Yang, X.X. Liu, et al., Development and evaluation of nitride coated titanium bipolar plates for PEM fuel cells, Int. J. Hydrogen Energy, 46(2021), No. 1, p. 1144. doi: 10.1016/j.ijhydene.2020.09.217
    [51]
    T.J. Pan, Y.J. Dai, J. Jiang, J.H. Xiang, Q.Q. Yang, and Y.S. Li, Anti-corrosion performance of the conductive bilayer CrC/CrN coated 304SS bipolar plate in acidic environment, Corros. Sci., 206(2022), art. No. 110495. doi: 10.1016/j.corsci.2022.110495
    [52]
    L.X. Yang, R.J. Liu, Y. Wang, H.J. Liu, C.L. Zeng, and C. Fu, Corrosion and interfacial contact resistance of nanocrystalline β-Nb2N coating on 430 FSS bipolar plates in the simulated PEMFC anode environment, Int. J. Hydrogen Energy, 46(2021), No. 63, p. 32206. doi: 10.1016/j.ijhydene.2021.06.207
    [53]
    Y. Jang, Y. Kim, W. Jeong, et al., Corrosion behavior of Ta and TiN double-layer-coated SUS316L for PEMFC bipolar plates using plasma-enhanced atomic layer deposition and magnetron sputtering, J. Alloys Compd., 977(2024), art. No. 173379. doi: 10.1016/j.jallcom.2023.173379
    [54]
    W.J. Lee, E.Y. Yun, H.B.R. Lee, S.W. Hong, and S.H. Kwon, Ultrathin effective TiN protective films prepared by plasma-enhanced atomic layer deposition for high performance metallic bipolar plates of polymer electrolyte membrane fuel cells, Appl. Surf. Sci., 519(2020), art. No. 146215. doi: 10.1016/j.apsusc.2020.146215
    [55]
    B.S. Mi, Z. Chen, Q. Wang, Y. Li, Z.W. Qin, and H.B. Wang, Properties of C-doped CrTiN films on the 316L stainless steel bipolar plate for PEMFC, Int. J. Hydrogen Energy, 46(2021), No. 64, p. 32645. doi: 10.1016/j.ijhydene.2021.07.109
    [56]
    L.H. Yang, Z.L. Qin, H.T. Pan, H. Yun, Y.L. Min, and Q.J. Xu, Corrosion protection of 304 stainless steel bipolar plates of PEMFC by coating SnO2 film, Int. J. Electrochem. Sci., 12(2017), No. 11, p. 10946. doi: 10.20964/2017.11.67
    [57]
    Y.L. Wang, S.H. Zhang, Z.X. Lu, L.S. Wang, and W.H. Li, Preparation and performances of electrically conductive Nb-doped TiO2 coatings for 316 stainless steel bipolar plates of proton-exchange membrane fuel cells, Corros. Sci., 142(2018), p. 249. doi: 10.1016/j.corsci.2018.07.034
    [58]
    M.F. Pillis, M.C.L. Oliveira, and R.A. Antunes, Surface chemistry and the corrosion behavior of magnetron sputtered niobium oxide films in sulfuric acid solution, Appl. Surf. Sci., 462(2018), p. 344. doi: 10.1016/j.apsusc.2018.08.123
    [59]
    X.Z. Wang, H.Q. Fan, T. Muneshwar, K. Cadien, and J.L. Luo, Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment, J. Mater. Sci. Technol., 61(2021), p. 75. doi: 10.1016/j.jmst.2020.06.012
    [60]
    J. Jin, M.L. Hu, and X.H. Zhao, Investigation of incorporating oxygen into TiN coating to resist high potential effects on PEMFC bipolar plates in vehicle applications, Int. J. Hydrogen Energy, 45(2020), No. 43, p. 23310. doi: 10.1016/j.ijhydene.2020.06.059
    [61]
    X.Z. Wang, T.P. Muneshwar, H.Q. Fan, K. Cadien, and J.L. Luo, Achieving ultrahigh corrosion resistance and conductive zirconium oxynitride coating on metal bipolar plates by plasma enhanced atomic layer deposition, J. Power Sources, 397(2018), p. 32. doi: 10.1016/j.jpowsour.2018.07.009
    [62]
    X.Z. Wang, H. Luo, T. Muneshwar, H.Q. Fan, K. Cadien, and J.L. Luo, Zr2N2O coating-improved corrosion resistance for the anodic dissolution induced by cathodic transient potential, ACS Appl. Mater. Interfaces, 10(2018), No. 46, p. 40111. doi: 10.1021/acsami.8b13149
    [63]
    Y.Y. Hong, X.Z. Wang, K. Cadien, and J.L. Luo, Controlled oxygen incorporation in TiN coatings via heat treatment for applications in PEMFC metallic bipolar plates, J. Electrochem. Soc., 168(2021), No. 5, art. No. 051502. doi: 10.1149/1945-7111/abfb38
    [64]
    S.L. Wang, M. Hou, Q. Zhao, et al., Ti/(Ti, Cr)N/CrN multilayer coated 316L stainless steel by arc ion plating as bipolar plates for proton exchange membrane fuel cells, J. Energy Chem., 26(2017), No. 1, p. 168. doi: 10.1016/j.jechem.2016.09.004
    [65]
    S. Pugal Mani, M. Kalaiarasan, K. Ravichandran, N. Rajendran, and Y. Meng, Corrosion resistant and conductive TiN/TiAlN multilayer coating on 316L SS: A promising metallic bipolar plate for proton exchange membrane fuel cell, J. Mater. Sci., 56(2021), No. 17, p. 10575. doi: 10.1007/s10853-020-05682-4
    [66]
    S. Pugal Mani, P. Agilan, M. Kalaiarasan, K. Ravichandran, N. Rajendran, and Y. Meng, Effect of multilayer CrN/CrAlN coating on the corrosion and contact resistance behavior of 316L SS bipolar plate for high temperature proton exchange membrane fuel cell, J. Mater. Sci. Technol., 97(2022), p. 134. doi: 10.1016/j.jmst.2021.04.043
    [67]
    Q. Jia, Z. Mu, X. Zhang, et al., Electronic conductive and corrosion mechanisms of dual nanostructure CuCr-doped hydrogenated carbon films for SS316L bipolar plates, Mater. Today Chem., 21(2021), art. No. 100521. doi: 10.1016/j.mtchem.2021.100521
    [68]
    J. Jin, J.Z. Zhang, M.L. Hu, and X. Li, Investigation of high potential corrosion protection with titanium carbonitride coating on 316L stainless steel bipolar plates, Corros. Sci., 191(2021), art. No. 109757. doi: 10.1016/j.corsci.2021.109757
    [69]
    S. Peng, J. Xu, Z.Y. Li, et al., A reactive-sputter-deposited TiSiN nanocomposite coating for the protection of metallic bipolar plates in proton exchange membrane fuel cells, Ceram. Int., 46(2020), No. 3, p. 2743. doi: 10.1016/j.ceramint.2019.09.263
    [70]
    A.H. Liu, J.X. Deng, H.B. Cui, Y.Y. Chen, and J. Zhao, Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings, Int. J. Refract. Met. Hard Mater., 31(2012), p. 82. doi: 10.1016/j.ijrmhm.2011.09.010
    [71]
    M. Dadfar, M. Salehi, M.A. Golozar, and S. Trasatti, Surface modification of 304 stainless steels to improve corrosion behavior and interfacial contact resistance of bipolar plates, Int. J. Hydrogen Energy, 41(2016), No. 46, p. 21375. doi: 10.1016/j.ijhydene.2016.09.149
    [72]
    Y.H. Lee, S. Noh, J.H. Lee, S.H. Chun, S.W. Cha, and I. Chang, Durable graphene-coated bipolar plates for polymer electrolyte fuel cells, Int. J. Hydrogen Energy, 42(2017), No. 44, p. 27350. doi: 10.1016/j.ijhydene.2017.09.053
    [73]
    M.G. Wu, C.D. Lu, T. Hong, et al., Chromium interlayer amorphous carbon film for 304 stainless steel bipolar plate of proton exchange membrane fuel cell, Surf. Coat. Technol., 307(2016), p. 374. doi: 10.1016/j.surfcoat.2016.07.069
    [74]
    X.Z. Wang, M.M. Zhang, D.D. Shi, et al, Long-term polarization accelerated degradation of nano-thin C/Ti coated SS316L bipolar plates used in polymer electrolyte membrane fuel cells, Int. J. Hydrogen Energy, 47(2022), No. 14, p. 8974. doi: 10.1016/j.ijhydene.2021.12.229
    [75]
    F.F. Bi, L.F. Peng, P.Y. Yi, and X.M. Lai, Multilayered Zr–C/a-C film on stainless steel 316L as bipolar plates for proton exchange membrane fuel cells, J. Power Sources, 314(2016), p. 58. doi: 10.1016/j.jpowsour.2016.02.078
    [76]
    F.F. Bi, X.B. Li, P.Y. Yi, K. Hou, L.F. Peng, and X.M. Lai, Characteristics of amorphous carbon films to resist high potential impact in PEMFCs bipolar plates for automotive application, Int. J. Hydrogen Energy, 42(2017), No. 20, p. 14279. doi: 10.1016/j.ijhydene.2017.04.113
    [77]
    P.Y. Yi, D. Zhang, L.F. Peng, and X.M. Lai, Impact of film thickness on defects and the graphitization of nanothin carbon coatings used for metallic bipolar plates in proton exchange membrane fuel cells, ACS Appl. Mater. Interfaces, 10(2018), No. 40, p. 34561. doi: 10.1021/acsami.8b08263
    [78]
    W.X. Zhang, P.Y. Yi, L.F. Peng, and X.M. Lai, Strategy of alternating bias voltage on corrosion resistance and interfacial conductivity enhancement of TiC x/a-C coatings on metallic bipolar plates in PEMFCs, Energy, 162(2018), p. 933. doi: 10.1016/j.energy.2018.08.099
    [79]
    X.Z. Wang, M.M. Zhang, Q. Hu, et al., Optimizing the interfacial potential distribution to mitigate high transient potential induced dissolution on C/Ti coated metal bipolar plates used in PEMFCs, Corros. Sci., 208(2022), art. No. 110686. doi: 10.1016/j.corsci.2022.110686
    [80]
    P.Y. Yi, L.F. Peng, T. Zhou, J.Q. Huang, and X.M. Lai, Composition optimization of multilayered chromium-nitride–carbon film on 316L stainless steel as bipolar plates for proton exchange membrane fuel cells, J. Power Sources, 236(2013), p. 47. doi: 10.1016/j.jpowsour.2013.02.034
    [81]
    W.Q. Yan, Y.F. Zhang, L. Chen, et al., Corrosion behavior and interfacial conductivity of amorphous hydrogenated carbon and titanium carbide composite (a-C:H/TiC) films prepared on titanium bipolar plates in PEMFCs, Diamond Relat. Mater., 120(2021), art. No. 108628. doi: 10.1016/j.diamond.2021.108628
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Share Article

    Article Metrics

    Article Views(304) PDF Downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return