Yafei Kuang, Kun Tao, Bo Yang, Peng Tong, Yan Zhang, Zhigang Sun, Kewei Zhang, Dunhui Wang, Jifan Hu,  and Liang Zuo, Giant reversible barocaloric effects with high thermal cycle stability in epoxy-bonded (MnCoGe)0.96(CuCoSn)0.04 composite, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2528-2534. https://doi.org/10.1007/s12613-024-2952-2
Cite this article as:
Yafei Kuang, Kun Tao, Bo Yang, Peng Tong, Yan Zhang, Zhigang Sun, Kewei Zhang, Dunhui Wang, Jifan Hu,  and Liang Zuo, Giant reversible barocaloric effects with high thermal cycle stability in epoxy-bonded (MnCoGe)0.96(CuCoSn)0.04 composite, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2528-2534. https://doi.org/10.1007/s12613-024-2952-2
Research Article

Giant reversible barocaloric effects with high thermal cycle stability in epoxy-bonded (MnCoGe)0.96(CuCoSn)0.04 composite

+ Author Affiliations
  • Hexagonal MnMX-based (M = Co or Ni, X = Si or Ge) alloys exhibit giant reversible barocaloric effects. However, giant volume expansion would result in the as-cast MnMX ingots fragmenting into powders, and inevitably bring the deterioration of mechanical properties and formability. Grain fragmentation can bring degradation of structural transformation entropy change during cyclic application and removal of pressure. In this paper, giant reversible barocaloric effects with high thermal cycle stability can be achieved in the epoxy bonded (MnCoGe)0.96(CuCoSn)0.04 composite. Giant reversible isothermal entropy change of 43.0 J∙kg−1∙K−1 and adiabatic temperature change from barocaloric effects (∆TBCE) of 15.6 K can be obtained within a wide temperature span of 30 K at 360 MPa, which is mainly attributed to the integration of the change in the transition temperature driven by pressure of −101 K∙GPa−1 and suitable thermal hysteresis of 11.1 K. Further, the variation of reversible ∆TBCE against the applied hydrostatic pressure reaches up to 43 K∙GPa−1, which is at the highest level among the other reported giant barocaloric compounds. More importantly, after 60 thermal cycles, the composite does not break and the calorimetric curves coincide well, demonstrating good thermal cycle stability.
  • loading
  • [1]
    J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, and O. Gutfleisch, Giant magnetocaloric effect driven by structural transitions, Nat. Mater., 11(2012), No. 7, p. 620. doi: 10.1038/nmat3334
    [2]
    H.X. Qi, J. Bai, M. Jin, et al., First-principles calculations of Ni–(Co)–Mn–Cu–Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 930. doi: 10.1007/s12613-022-2566-5
    [3]
    Y.Y. Gong, D.H. Wang, Q.Q. Cao, E.K. Liu, J. Liu, and Y.W. Du, Electric field control of the magnetocaloric effect, Adv. Mater., 27(2015), No. 5, p. 801. doi: 10.1002/adma.201404725
    [4]
    D.Y. Cong, W.X. Xiong, A. Planes, et al., Colossal elastocaloric effect in ferroelastic Ni–Mn–Ti alloys, Phys. Rev. Lett., 122(2019), No. 25, art. No. 255703. doi: 10.1103/PhysRevLett.122.255703
    [5]
    A. Aznar, P. Lloveras, J.Y. Kim, et al., Giant and reversible inverse barocaloric effects near room temperature in ferromagnetic MnCoGeB0.03, Adv. Mater., 31(2019), No. 37, art. No. e1903577. doi: 10.1002/adma.201903577
    [6]
    P.T. Cheng, Z. Zhang, X.C. Kan, et al., Low-pressure-induced large barocaloric effect in MnAs0.94Sb0.06 alloy around room temperature, Rare Met., 42(2023), No. 12, p. 3977. doi: 10.1007/s12598-023-02374-1
    [7]
    D. Boldrin, E. Mendive-Tapia, J. Zemen, et al., Barocaloric properties of quaternary Mn3(Zn, In)N for room-temperature refrigeration applications, Phys. Rev. B, 104(2021), No. 13, art. No. 134101. doi: 10.1103/PhysRevB.104.134101
    [8]
    F.E. Hu, S.X. Wei, Y.M. Cao, et al., Pressure dependence of phase transformation, thermal expansion and barocaloric property in a polycrystalline Ni54Mn23Ga23 alloy, J. Alloys Compd., 990(2024), art. No. 174431. doi: 10.1016/j.jallcom.2024.174431
    [9]
    V.K. Sharma and M. Manekar, Estimation of barocaloric effect across the magnetostructural transition in Mn–Co–Ge alloy from magnetization measurements under pressure, J. Magn. Magn. Mater., 565(2023), art. No. 170236. doi: 10.1016/j.jmmm.2022.170236
    [10]
    S.I. Ohkoshi, K. Nakagawa, M. Yoshikiyo, et al., Giant adiabatic temperature change and its direct measurement of a barocaloric effect in a charge-transfer solid, Nat. Commun., 14(2023), No. 1, art. No. 8466. doi: 10.1038/s41467-023-44350-4
    [11]
    M.W. Wu, W. Yong, C.Q. Fu, et al., Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 773. doi: 10.1007/s12613-023-2767-6
    [12]
    B. Li, Y. Kawakita, S. Ohira-Kawamura, et al., Colossal barocaloric effects in plastic crystals, Nature, 567(2019), No. 7749, p. 506. doi: 10.1038/s41586-019-1042-5
    [13]
    N.A. de Oliveira, Barocaloric effect in neopentylglycol plastic crystal: A theoretical study, Acta Mater., 246(2023), art. No. 118657. doi: 10.1016/j.actamat.2022.118657
    [14]
    Z. Zhang, K. Li, S.C. Lin, et al., Thermal batteries based on inverse barocaloric effects, Sci. Adv., 9(2023), No. 7, art. No. eadd0374. doi: 10.1126/sciadv.add0374
    [15]
    P. Lloveras, T. Samanta, M. Barrio, et al., Giant reversible barocaloric response of (MnNiSi)1− x(FeCoGe) x (x = 0.39, 0.40, 0.41), APL Mater., 7(2019), No. 6, art. No. 061106. doi: 10.1063/1.5097959
    [16]
    R.R. Wu, L.F. Bao, F.X. Hu, et al., Giant barocaloric effect in hexagonal Ni2In-type Mn–Co–Ge–In compounds around room temperature, Sci. Rep., 5(2015), art. No. 18027. doi: 10.1038/srep18027
    [17]
    T. Samanta, P. Lloveras, A. Us Saleheen, et al., Barocaloric and magnetocaloric effects in (MnNiSi)1− x(FeCoGe) x, Appl. Phys. Lett.,112(2018), No. 2, art. No. 021907. doi: 10.1063/1.5011743
    [18]
    H Zhou, D.K. Wang, Z. Li, et al., Large enhancement of magnetocaloric effect induced by dual regulation effects of hydrostatic pressure in Mn0.94Fe0.06NiGe compound, J. Mater. Sci. Technol., 114(2022), p. 73. doi: 10.1016/j.jmst.2021.11.019
    [19]
    Y.F. Kuang, J. Qi, H.J. Xu, et al., Low-pressure-induced large reversible barocaloric effect near room temperature in (MnNiGe)–(FeCoGe) alloys, Scripta Mater., 200(2021), art. No. 113908. doi: 10.1016/j.scriptamat.2021.113908
    [20]
    A. Aznar, A. Gràcia-Condal, A. Planes, et al., Giant barocaloric effect in all-d-metal Heusler shape memory alloys, Phys. Rev. Mater., 3(2019), No. 4, art. No. 044406. doi: 10.1103/PhysRevMaterials.3.044406
    [21]
    Y.Y. Zhao, F.X. Hu, L.F. Bao, et al., Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure, J. Am. Chem. Soc., 137(2015), No. 5, p. 1746. doi: 10.1021/ja510693a
    [22]
    R.R. Wu, F.R. Shen, F.X. Hu, et al., Critical dependence of magnetostructural coupling and magnetocaloric effect on particle size in Mn–Fe–Ni–Ge compounds, Sci. Rep., 6(2016), art. No. 20993. doi: 10.1038/srep20993
    [23]
    Y.Y. Gong, D.H. Wang, Q.Q. Cao, et al., Textured, dense and giant magnetostrictive alloy from fissile polycrystal, Acta Mater., 98(2015), p. 113. doi: 10.1016/j.actamat.2015.07.026
    [24]
    Q.B. Hu, Y. Hu, S. Zhang, et al., Large reversible magnetostrictive effect of MnCoSi-based compounds prepared by high-magnetic-field solidification, Appl. Phys. Lett., 112(2018), No. 5, art. No. 052404. doi: 10.1063/1.5011321
    [25]
    X.W. Hao, Q.B. Hu, M.Q. Gao, et al., Giant negative thermal expansion in a textured MnCoSi alloy, J. Alloys Compd., 891(2022), art. No. 161915. doi: 10.1016/j.jallcom.2021.161915
    [26]
    X.W. Hao, B. Yang, J. Li, et al., Achieving a linear magnetostrictive effect in textured MnCoSiGe alloys, Acta Mater., 242(2023), art. No. 118486. doi: 10.1016/j.actamat.2022.118486
    [27]
    F. Zhu, J.C. Lin, W.B. Jiang, et al., Enhanced mechanical properties and large magnetocaloric effect in epoxy-bonded Mn0.98CoGe, Scripta Mater., 150(2018), p. 96. doi: 10.1016/j.scriptamat.2018.02.044
    [28]
    Y.Y. Shao, Y.F. Liu, K. Wang, M.X. Zhang, and J. Liu, Impact of interface structure on functionality in hot-pressed La–Fe–Si/Fe magnetocaloric composites, Acta Mater., 195(2020), p. 163. doi: 10.1016/j.actamat.2020.04.042
    [29]
    H. Zhou, K. Tao, B. Chen, et al., Low-melting metal bonded MM’X/In composite with largely enhanced mechanical property and anisotropic negative thermal expansion, Acta Mater., 229(2022), art. No. 117830. doi: 10.1016/j.actamat.2022.117830
    [30]
    Y. Si, J. Liu, Y.Y. Gong, et al., Magnetostructural transformation and magnetocaloric effect of Sn-bonded Mn0.66Fe0.34Ni0.66Fe0.34Si0.66Ge0.34 composite, Sci. Rep., 8(2018), No. 1, art. No. 19. doi: 10.1038/s41598-017-18240-x
    [31]
    Y.F. Kuang, X.W. Hao, Z. Zhang, et al., Barocaloric and magnetocaloric effects in isostructurally alloyed (MnCoGe)–(CuCoSn) systems, J. Magn. Magn. Mater., 543(2022), art. No. 168639. doi: 10.1016/j.jmmm.2021.168639
    [32]
    K. Tao, W.H. Song, J.C. Lin, et al., Giant reversible barocaloric effect with low hysteresis in antiperovskite PdNMn3 compound, Scripta Mater., 203(2021), art. No. 114049. doi: 10.1016/j.scriptamat.2021.114049
    [33]
    K. Tao, W.H. Song, P. Tong, et al., Secondary-field boosted caloric effect associated with first-order phase transition, a quasi-direct measurement, Scripta Mater., 218(2022), art. No. 114836. doi: 10.1016/j.scriptamat.2022.114836
    [34]
    T. Samanta, D.L. Lepkowski, A.U. Saleheen, et al., Hydrostatic pressure-induced modifications of structural transitions lead to large enhancements of magnetocaloric effects in MnNiSi-based systems, Phys. Rev. B, 91(2015), No. 2, art. No. 020401.
    [35]
    H.W. Liu, Z. Li, Y.L. Zhang, Z.T. Ni, K. Xu, and Y.S. Liu, A large barocaloric effect associated with paramagnetic martensitic transformation in Co50Fe2.5V31.5Ga16 quaternary Heusler alloy, Scripta Mater., 177(2020), p. 1. doi: 10.1016/j.scriptamat.2019.10.003
    [36]
    K. Liu, H. Zeng, J. Qi, et al., Microstructure and giant baro-caloric effect induced by low pressure in Heusler Co51Fe1V33Ga15 alloy undergoing martensitic transformation, J. Mater. Sci. Technol., 73(2021), p. 76. doi: 10.1016/j.jmst.2020.09.022
    [37]
    Z.B. Li, J.J. Yang, D. Li, et al., Tuning the reversible magnetocaloric effect in Ni–Mn–In-based alloys through co and Cu co-doping, Adv. Electron. Mater., 5(2019), No. 3, art. No. 1800845. doi: 10.1002/aelm.201800845
    [38]
    E. Stern-Taulats, A. Gràcia-Condal, A. Planes, et al., Reversible adiabatic temperature changes at the magnetocaloric and barocaloric effects in Fe49Rh51, Appl. Phys. Lett.,107(2015), No. 15, art. No. 152409. doi: 10.1063/1.4933409
    [39]
    E. Stern-Taulats, A. Planes, P. Lloveras, et al., Tailoring barocaloric and magnetocaloric properties in low-hysteresis magnetic shape memory alloys, Acta Mater., 96(2015), p. 324. doi: 10.1016/j.actamat.2015.06.026
    [40]
    Y.F. Liu, Q. Shen, Z.Y. Wei, W. Sun, F.H. Chen, and J. Liu, Enhanced barocaloric effect for Pd–In–Fe shape memory alloys with hydrostatic-pressure training, J. Appl. Phys., 127(2020), No. 5, art. No. 055109. doi: 10.1063/1.5129659
    [41]
    X.J. He, Y.R. Kang, S.X. Wei, et al., A large barocaloric effect and its reversible behavior with an enhanced relative volume change for Ni42.3Co7.9Mn38.8Sn11 Heusler alloy, J. Alloys Compd., 741(2018), p. 821. doi: 10.1016/j.jallcom.2018.01.244
    [42]
    Z.Y. Wei, Y. Shen, Z. Zhang, et al., Low-pressure-induced giant barocaloric effect in an all-d-metal Heusler Ni35.5Co14.5Mn35Ti15 magnetic shape memory alloy, APL Mater., 8(2020), No. 5, art. No. 051101. doi: 10.1063/5.0005021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Share Article

    Article Metrics

    Article Views(277) PDF Downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return