Haixu Li, Haobo He, Tiannan Jiang, Yunfei Du, Zhichen Wu, Liang Xu, Xinjie Wang, Xiaoguang Liu, Wanhua Yu, and Wendong Xue, Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 169-181. https://doi.org/10.1007/s12613-024-2953-1
Cite this article as:
Haixu Li, Haobo He, Tiannan Jiang, Yunfei Du, Zhichen Wu, Liang Xu, Xinjie Wang, Xiaoguang Liu, Wanhua Yu, and Wendong Xue, Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 169-181. https://doi.org/10.1007/s12613-024-2953-1
Research Article

Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation

+ Author Affiliations
  • Corresponding author:

    Xiaoguang Liu    E-mail: liuxg@ustb.edu.cn

  • Received: 15 February 2024Revised: 5 June 2024Accepted: 6 June 2024Available online: 12 June 2024
  • S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800°C at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate (PMS) for methylene blue (MB) degradation. The effects of two different mixing routes were identified on the MB degradation performance. Particularly, the catalyst obtained by the alcohol solvent evaporation (MOF-AEP) mixing route could degrade 95.60% MB (50 mg/L) within 4 min (degradation rate: K = 0.78 min–1), which was faster than that derived from the direct grinding method (MOF-DGP, 80.97%, K = 0.39 min–1). X-ray photoelectron spectroscopy revealed that the Co–S content of MOF-AEP (43.39at%) was less than that of MOF-DGP (54.73at%), and the proportion of C–S–C in MOF-AEP (13.56at%) was higher than that of MOF-DGP (10.67at%). Density functional theory calculations revealed that the adsorption energy of Co for PMS was −2.94 eV when sulfur was doped as C–S–C on the carbon skeleton, which was higher than that when sulfur was doped next to cobalt in the form of Co–S bond (−2.86 eV). Thus, the C–S–C sites might provide more contributions to activate PMS compared with Co–S. Furthermore, the degradation parameters, including pH and MOF-AEP dosage, were investigated. Finally, radical quenching experiments and electron paramagnetic resonance (EPR) measurements revealed that 1O2 might be the primary catalytic species, whereas · O2− might be the secondary one in degrading MB.
  • loading
  • [1]
    Y.C. Yang, Q.L. Zhu, X.W. Peng, et al., Hydrogels for the removal of the methylene blue dye from wastewater: A review, Environ. Chem. Lett., 20(2022), No. 4, p. 2665. doi: 10.1007/s10311-022-01414-z
    [2]
    X.T. Huo, R.X. Chai, L.Z. Gou, M. Zhang, and M. Guo, Facile synthesis of composite polyferric magnesium–silicate–sulfate coagulant with enhanced performance in water and wastewater, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 574. doi: 10.1007/s12613-023-2704-8
    [3]
    X.D. Du and M.H. Zhou, Strategies to enhance catalytic performance of metal–organic frameworks in sulfate radical-based advanced oxidation processes for organic pollutants removal, Chem. Eng. J., 403(2021), art. No. 126346. doi: 10.1016/j.cej.2020.126346
    [4]
    J.L. Wang and S.Z. Wang, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chem. Eng. J., 334(2018), p. 1502. doi: 10.1016/j.cej.2017.11.059
    [5]
    J.Q. Wang, B. Hasaer, M. Yang, et al., Anaerobically-digested sludge disintegration by transition metal ions-activated peroxymonosulfate (PMS): Comparison between Co2+, Cu2+, Fe2+ and Mn2+, Sci. Total Environ., 713(2020), art. No. 136530. doi: 10.1016/j.scitotenv.2020.136530
    [6]
    P.D. Hu and M.C. Long, Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications, Appl. Catal. B Environ., 181(2016), p. 103. doi: 10.1016/j.apcatb.2015.07.024
    [7]
    J.S. Yuan, Y. Zhang, X.Y. Zhang, L. Zhao, H.L. Shen, and S.G. Zhang, Template-free synthesis of core–shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 177. doi: 10.1007/s12613-022-2473-9
    [8]
    G.J. Lv, T. Wang, X.Y. Zou, et al., Highly dispersed copper oxide-loaded hollow Fe-MFI zeolite for enhanced tetracycline degradation, Colloids Surf. A, 655(2022), art. No. 130250. doi: 10.1016/j.colsurfa.2022.130250
    [9]
    W.J. Peng, L.X. Cai, Y.N. Lu, and Y.Y. Zhang, Preparation of Mn–Co-MCM-41 molecular sieve with thermosensitive template and its degradation performance for rhodamine B, Catalysts, 13(2023), No. 6, art. No. 991. doi: 10.3390/catal13060991
    [10]
    Q.Y. Yi, J.L. Tan, W.Y. Liu, H. Lu, M.Y. Xing, and J.L. Zhang, Peroxymonosulfate activation by three-dimensional cobalt hydroxide/graphene oxide hydrogel for wastewater treatment through an automated process, Chem. Eng. J., 400(2020), art. No. 125965. doi: 10.1016/j.cej.2020.125965
    [11]
    Z.Y. Yang, X. Li, Y.Z. Huang, et al., Facile synthesis of cobalt-iron layered double hydroxides nanosheets for direct activation of peroxymonosulfate (PMS) during degradation of fluoroquinolones antibiotics, J. Clean. Prod., 310(2021), art. No. 127584. doi: 10.1016/j.jclepro.2021.127584
    [12]
    C.L. He, Y. Liu, M.W. Qi, et al., A functionalized activated carbon adsorbent prepared from waste amidoxime resin by modifying with H3PO4 and ZnCl2 and its excellent Cr(VI) adsorption, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 585. doi: 10.1007/s12613-023-2737-z
    [13]
    T.H. Ma, H.X. Li, X.G. Liu, et al., Preparation of cobalt and nitrogen-doped porous carbon composite catalysts from ZIF-9 and their outstanding Fenton-like catalytic properties towards methylene blue, ChemistrySelect, 8(2023), No. 18, art. No. e202204785. doi: 10.1002/slct.202204785
    [14]
    C.G. Hu and L.M. Dai, Doping of carbon materials for metal-free electrocatalysis, Adv. Mater., 31(2019), No. 7, art. No. e1804672. doi: 10.1002/adma.201804672
    [15]
    Y. Gao, Q. Wang, G.Z. Ji, and A.M. Li, Degradation of antibiotic pollutants by persulfate activated with various carbon materials, Chem. Eng. J., 429(2022), art. No. 132387. doi: 10.1016/j.cej.2021.132387
    [16]
    W.Q. Huang, S. Xiao, H. Zhong, M. Yan, and X. Yang, Activation of persulfates by carbonaceous materials: A review, Chem. Eng. J., 418(2021), art. No. 129297. doi: 10.1016/j.cej.2021.129297
    [17]
    S.J. Zhang, X.W. Huo, S.Z. Xu, et al., Original sulfur-doped carbon materials synthesized by coffee grounds for activating persulfate to BPA degradation: The key role of electron transfer, Process. Saf. Environ. Prot., 168(2022), p. 1219. doi: 10.1016/j.psep.2022.10.073
    [18]
    S.Y. Liu, C. Lai, B.S. Li, et al., Heteroatom doping in metal-free carbonaceous materials for the enhancement of persulfate activation, Chem. Eng. J., 427(2022), art. No. 131655. doi: 10.1016/j.cej.2021.131655
    [19]
    C.L. Ding, Z. Liu, S.Y. Pan, et al., Activation of peroxydisulfate via Fe@sulfur-doped carbon-supported nanocomposite for degradation of norfloxacin: Efficiency and mechanism, Chem. Eng. J., 460(2023), art. No. 141729. doi: 10.1016/j.cej.2023.141729
    [20]
    J.L. Li, W.H. Zhu, Y. Gao, et al., The catalyst derived from the sulfurized Co-doped metal–organic framework (MOF) for peroxymonosulfate (PMS) activation and its application to pollutant removal, Sep. Purif. Technol., 285(2022), art. No. 120362. doi: 10.1016/j.seppur.2021.120362
    [21]
    Y.W. Li, Q. Wu, R.C. Ma, et al., A Co-MOF-derived Co9S8@NS-C electrocatalyst for efficient hydrogen evolution reaction, RSC Adv., 11(2021), No. 11, p. 5947. doi: 10.1039/D0RA10864B
    [22]
    T. Yamada, Y. Kubo, and N. Kimizuka, Introduction of thiourea into metal–organic frameworks by immersion technique and their phase transition characteristics, Chem. Lett., 46(2017), No. 1, p. 115. doi: 10.1246/cl.160910
    [23]
    M.A. Asgari, M. Moradi, M.J. Eshraghi, and S. Hajati, A comparison between microwave reflection loss of MIL-53 derived Fe2O3 and MOF-71-derived Co3O4 through direct and indirect heat treatment, Synth. Met., 295(2023), art. No. 117337. doi: 10.1016/j.synthmet.2023.117337
    [24]
    J.Q. Dong, Z.Q. Gong, Y.Z. Chen, et al., Organic microstructure-induced hierarchically porous g-C3N4 photocatalyst, Sci. China Mater., 66(2023), No. 8, p. 3176. doi: 10.1007/s40843-022-2463-8
    [25]
    D. Chisca, L. Croitor, O. Petuhov, E.B. Coropceanu, and M.S. Fonari, MOF-71 as a degradation product in single crystal to single crystal transformation of new three-dimensional Co(II) 1, 4-benzenedicarboxylate, CrystEngComm, 18(2016), No. 1, p. 38. doi: 10.1039/C5CE02094H
    [26]
    L.C. Yin, J. Liang, G.M. Zhou, F. Li, R. Saito, and H.M. Cheng, Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations, Nano Energy, 25(2016), p. 203. doi: 10.1016/j.nanoen.2016.04.053
    [27]
    J. Li, H. Li, W. Xie, et al., Flame-assisted synthesis of O-coordinated single-atom catalysts for efficient electrocatalytic oxygen reduction and hydrogen evolution reaction, Small Methods, 6(2022), No. 1, art. No. e2101324. doi: 10.1002/smtd.202101324
    [28]
    Z.Z. Du, X.J. Chen, W. Hu, et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries, J. Am. Chem. Soc., 141(2019), No. 9, p. 3977. doi: 10.1021/jacs.8b12973
    [29]
    K.K. Qiu, Y.J. Zhang, L. Wang, M.Y. Wu, J.Y. Jin, and W.Q. Shi, N-functionalized Ti2C MXene as a high-performance adsorbent for strontium ions: A first-principles study, J. Phys. Chem. C, 127(2023), No. 23, p. 11167. doi: 10.1021/acs.jpcc.3c00849
    [30]
    T. Lu and F.W. Chen, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem., 33(2012), No. 5, p. 580. doi: 10.1002/jcc.22885
    [31]
    Y.Y. Liu, Z.R. Min, J.C. Jiang, et al., Molybdenum, cobalt sulfide-modified N-, S-doped graphene from low-temperature molecular pyrolysis: Mutual activation effect for hydrogen evolution, ACS Sustainable Chem. Eng., 7(2019), No. 24, p. 19442. doi: 10.1021/acssuschemeng.9b04219
    [32]
    X.C. Feng, Z.J. Xiao, H.T. Shi, et al., How nitrogen and sulfur doping modified material structure, transformed oxidation pathways, and improved degradation performance in peroxymonosulfate activation, Environ. Sci. Technol., 56(2022), No. 19, p. 14048. doi: 10.1021/acs.est.2c04172
    [33]
    D.H. Duan, W.W. Zhao, K.X. Chen, et al., MOF-71 derived layered Co–CoP/C for advanced Li–S batteries, J. Alloys Compd., 886(2021), art. No. 161203. doi: 10.1016/j.jallcom.2021.161203
    [34]
    Y. Zhou, W.H. Lv, B.L. Zhu, et al., Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution, ACS Sustainable Chem. Eng., 7(2019), No. 6, p. 5801. doi: 10.1021/acssuschemeng.8b05374
    [35]
    C.A. Téllez S, E. Hollauer, M.A. Mondragon, and V.M. Castaño, Fourier transform infrared and Raman spectra, vibrational assignment and ab initio calculations of terephthalic acid and related compounds, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 57(2001), No. 5, p. 993. doi: 10.1016/S1386-1425(00)00428-5
    [36]
    S.A. Abrori, N.L.W. Septiani, F.N. Hakim, et al., Non-enzymatic electrochemical detection for uric acid based on a glassy carbon electrode modified with MOF-71, IEEE Sens. J., 21(2021), No. 1, p. 170. doi: 10.1109/JSEN.2020.3014298
    [37]
    M. Mouanga, L. Ricq, and P. Berçot, Effects of thiourea and urea on zinc–cobalt electrodeposition under continuous current, J. Appl. Electrochem., 38(2008), No. 2, p. 231. doi: 10.1007/s10800-007-9430-1
    [38]
    Y.P. Guo, Z.Q. Zeng, Y.L. Li, Z.G. Huang, and Y. Cui, In-situ sulfur-doped carbon as a metal-free catalyst for persulfate activated oxidation of aqueous organics, Catal. Today, 307(2018), p. 12. doi: 10.1016/j.cattod.2017.05.080
    [39]
    S.Z. Wang and J.L. Wang, Peroxymonosulfate activation by Co9S8@ S and N co-doped biochar for sulfamethoxazole degradation, Chem. Eng. J., 385(2020), art. No. 123933. doi: 10.1016/j.cej.2019.123933
    [40]
    G. Zhang, P. Wang, W.T. Lu, et al., Co nanoparticles/Co, N, S tri-doped graphene templated from in-situ-formed Co, S co-doped g-C3N4 as an active bifunctional electrocatalyst for overall water splitting, ACS Appl. Mater. Interfaces, 9(2017), No. 34, p. 28566. doi: 10.1021/acsami.7b08138
    [41]
    J. Tang, R.R. Salunkhe, H. Zhang, et al., Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons, Sci. Rep., 6(2016), art. No. 30295. doi: 10.1038/srep30295
    [42]
    Q.Q. Ren, Z.Y. Wu, S. Hu, et al., Sulfur self-doped char with high specific capacitance derived from waste tire: Effects of pyrolysis temperature, Sci. Total Environ., 741(2020), art. No. 140193. doi: 10.1016/j.scitotenv.2020.140193
    [43]
    X.G. Duan, K. O’Donnell, H.Q. Sun, Y.X. Wang, and S.B. Wang, Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions, Small, 11(2015), No. 25, p. 3036. doi: 10.1002/smll.201403715
    [44]
    J. Deng, Y.J. Ge, C.Q. Tan, et al., Degradation of ciprofloxacin using α-MnO2 activated peroxymonosulfate process: Effect of water constituents, degradation intermediates and toxicity evaluation, Chem. Eng. J., 330(2017), p. 1390. doi: 10.1016/j.cej.2017.07.137
    [45]
    Z.L. Wu, Z.K. Xiong, R. Liu, et al., Pivotal roles of N-doped carbon shell and hollow structure in nanoreactor with spatial confined Co species in peroxymonosulfate activation: Obstructing metal leaching and enhancing catalytic stability, J. Hazard. Mater., 427(2022), art. No. 128204. doi: 10.1016/j.jhazmat.2021.128204
    [46]
    M.X. Lu, G.Y. Kang, and Y.J. Deng, Construction of mesoporous S-doped Co3O4 with abundant oxygen vacancies as an efficient activator of PMS for organic dye degradation, CrystEngComm, 25(2023), No. 18, p. 2767. doi: 10.1039/D3CE00067B
    [47]
    H.X. Li, S.D. Xu, J. Du, J.H. Tang, and Q.W. Zhou, Cu@Co-MOFs as a novel catalyst of peroxymonosulfate for the efficient removal of methylene blue, RSC Adv., 9(2019), No. 17, p. 9410. doi: 10.1039/C9RA01143A
    [48]
    Z.L. Wu, Y.P. Wang, Z.K. Xiong, et al., Core–shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine, Appl. Catal. B: Environ., 277(2020), art. No. 119136. doi: 10.1016/j.apcatb.2020.119136
    [49]
    F. Ghanbari and M. Moradi, Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review, Chem. Eng. J., 310(2017), p. 41. doi: 10.1016/j.cej.2016.10.064
    [50]
    W.X. Qin, G.D. Fang, Y.J. Wang, and D.M. Zhou, Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals, Chem. Eng. J., 348(2018), p. 526. doi: 10.1016/j.cej.2018.04.215
    [51]
    J.K. Tan, X.D. Zhang, Y.W. Lu, X. Li, and Y.M. Huang, Role of interface of metal–organic frameworks and their composites in persulfate-based advanced oxidation process for water purification, Langmuir, 40(2024), No. 1, p. 21. doi: 10.1021/acs.langmuir.3c02877
    [52]
    Y.W. Yu, H.Y. Quan, Z.X. Zhang, et al., Nonradical pathway dominated activation of peroxymonosulfate by ZnFe2O4/C composites to eliminate tetracycline hydrochloride: Insight into the cycle of Zn/Fe and electron transfer, Sep. Purif. Technol., 322(2023), art. No. 124336. doi: 10.1016/j.seppur.2023.124336
    [53]
    J.L. Wang and S.Z. Wang, Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants, Chem. Eng. J., 411(2021), art. No. 128392. doi: 10.1016/j.cej.2020.128392
    [54]
    J.B. Sun, D.J. Zhang, D.S. Xia, and Q. Li, Orange peels biochar doping with Fe–Cu bimetal for PMS activation on the degradation of bisphenol A: A synergy of ${\mathrm{SO}}_4^{- } \cdot$, · OH, 1O2 and electron transfer, Chem. Eng. J., 471(2023), art. No. 144832. doi: 10.1016/j.cej.2023.144832
    [55]
    S.Z. Wang, J. Hu, and J.L. Wang, Degradation of sulfamethoxazole using PMS activated by cobalt sulfides encapsulated in nitrogen and sulfur Co-doped graphene, Sci. Total Environ., 827(2022), art. No. 154379. doi: 10.1016/j.scitotenv.2022.154379
    [56]
    H.X. Li, Z.X. Yang, S. Lu, et al., Nano-porous bimetallic CuCo-MOF-74 with coordinatively unsaturated metal sites for peroxymonosulfate activation to eliminate organic pollutants: Performance and mechanism, Chemosphere, 273(2021), art. No. 129643. doi: 10.1016/j.chemosphere.2021.129643
    [57]
    W.K. Zhu, D. Kim, M.S. Han, et al., Fibrous cellulose nanoarchitectonics on N-doped carbon-based metal-free catalytic nanofilter for highly efficient advanced oxidation process, Chem. Eng. J., 460(2023), art. No. 141593. doi: 10.1016/j.cej.2023.141593
    [58]
    H.X. Li, J. Zhang, Y.Z. Yao, X.R. Miao, J.L. Chen, and J.H. Tang, Nanoporous bimetallic metal-organic framework (FeCo-BDC) as a novel catalyst for efficient removal of organic contaminants, Environ. Pollut., 255(2019), art. No. 113337. doi: 10.1016/j.envpol.2019.113337
    [59]
    W. Zhang, M. Li, W.T. Shang, et al., Singlet oxygen dominated core–shell Co nanoparticle to synergistically degrade methylene blue through efficient activation of peroxymonosulfate, Sep. Purif. Technol., 308(2023), art. No. 122849. doi: 10.1016/j.seppur.2022.122849
    [60]
    L.Y. Wu, P.P. Guo, X. Wang, H.Y. Li, A.Z. Li, and K.Y. Chen, Mechanism study of CoS2/Fe(III)/peroxymonosulfate catalysis system: The vital role of sulfur vacancies, Chemosphere, 288(2022), art. No. 132646. doi: 10.1016/j.chemosphere.2021.132646
    [61]
    Z. Zhu, Z.X. Liu, X. Tang, et al., Sulfur-doped g-C3N4 for efficient photocatalytic CO2 reduction: Insights by experiment and first-principles calculations, Catal. Sci. Technol., 11(2021), No. 5, p. 1725. doi: 10.1039/D0CY02382E
    [62]
    X.X. Wang, C.Y. Zhang, D.H. Li, et al., Theoretical study of local S coordination environment on Fe single atoms for peroxymonosulfate-based advanced oxidation processes, J. Hazard. Mater., 454(2023), art. No. 131469. doi: 10.1016/j.jhazmat.2023.131469
    [63]
    S.Q. Li, Y.J. Hou, Q.M. Chen, X.D. Zhang, H.Y. Cao, and Y.M. Huang, Promoting active sites in MOF-derived homobimetallic hollow nanocages as a high-performance multifunctional nanozyme catalyst for biosensing and organic pollutant degradation, ACS Appl. Mater. Interfaces, 12(2020), No. 2, p. 2581. doi: 10.1021/acsami.9b20275
    [64]
    S.Z. Wang, H.Y. Liu, and J.L. Wang, Nitrogen, sulfur and oxygen co-doped carbon-armored Co/Co9S8 rods (Co/Co9S8@N–S–O–C) as efficient activator of peroxymonosulfate for sulfamethoxazole degradation, J. Hazard. Mater., 387(2020), art. No. 121669. doi: 10.1016/j.jhazmat.2019.121669
    [65]
    X.Q. Zhou, M.Y. Luo, C.Y. Xie, et al., Tunable S doping from Co3O4 to Co9S8 for peroxymonosulfate activation: Distinguished radical/nonradical species and generation pathways, Appl. Catal. B Environ., 282(2021), art. No. 119605. doi: 10.1016/j.apcatb.2020.119605
    [66]
    S.Z. Wang and J.L. Wang, High efficient activation of peroxymonosulfate by Co9S8 anchored in N, S, O co-doped carbon composite for degradation of sulfamethoxazole: Effect of sulfur precursor and sulfur doping content, Chem. Eng. J., 434(2022), art. No. 134824. doi: 10.1016/j.cej.2022.134824
    [67]
    G.S. Zhang, J.Y. Gao, J. Wang, H.F. Lin, J.X. Xu, and L. Wang, ZIF-67/melamine derived hollow N-doped carbon/Co9S8 polyhedron to activate peroxymonosulfate for degradation of tetracycline, J. Environ. Chem. Eng., 11(2023), No. 2, art. No. 109355. doi: 10.1016/j.jece.2023.109355
    [68]
    Y. Jiang, J. Wang, B. Liu, et al., Superhydrophilic N, S, O-doped Co/CoO/Co9S8@carbon derived from metal-organic framework for activating peroxymonosulfate to degrade sulfamethoxazole: Performance, mechanism insight and large-scale application, Chem. Eng. J., 446(2022), art. No. 137361. doi: 10.1016/j.cej.2022.137361
    [69]
    Y.K. Long, S. Li, Y.P. Su, et al., Sulfur-containing iron nanocomposites confined in S/N co-doped carbon for catalytic peroxymonosulfate oxidation of organic pollutants: Low iron leaching, degradation mechanism and intermediates, Chem. Eng. J., 404(2021), art. No. 126499. doi: 10.1016/j.cej.2020.126499
    [70]
    Y. Gao, T.W. Wu, C.D. Yang, et al., Activity trends and mechanisms in peroxymonosulfate-assisted catalytic production of singlet oxygen over atomic metal–N–C catalysts, Angew. Chem. Int. Ed Engl., 60(2021), No. 41, p. 22513. doi: 10.1002/anie.202109530
    [71]
    G.X. Zhu, J.L. Zhu, Q. Liu, et al., ${\mathrm{HPO}}_4^{2-} $ enhanced catalytic activity of N, S, B, and O-codoped carbon nanosphere-armored Co9S8 nanoparticles for organic pollutants degradation via peroxymonosulfate activation: Critical roles of superoxide radical, singlet oxygen and electron transfer, Phys. Chem. Chem. Phys., 23(2021), No. 9, p. 5283. doi: 10.1039/D0CP04773B
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(284) PDF Downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return