Cite this article as: |
Mei Zhang, Wenhao Li, Yangfei Chen, Yang Jiang, Xiaofei Guo, and Han Dong, Microstructural evolution during the progressive transformation-induced plasticity effect in a Fe–0.1C–5Mn medium manganese steel, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2963-z |
Mei Zhang E-mail: zmei@shu.edu.cn
Xiaofei Guo E-mail: xiaofei_guo@shu.edu.cn
Han Dong E-mail: 13910077790@163.com
[1] |
S.S. Li and H.W. Luo, Medium-Mn steels for hot forming application in the automotive industry, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 741. doi: 10.1007/s12613-020-2179-9
|
[2] |
H. Xu, L.J. Zhou, W.L. Wang, and Y. Yi, A simple route for preparation of TRIP-assisted Si–Mn steel with excellent performance using direct strip casting, Int. J. Miner. Metall. Mater., 31(2024), No. 10, p. 2173. doi: 10.1007/s12613-023-2818-z
|
[3] |
B. Hu, H. Sui, Q.H. Wen, Z. Wang, A. Gramlich, and H.W. Luo, Review on the plastic instability of medium-Mn steels for identifying the formation mechanisms of Lüders and Portevin–Le Chatelier bands, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1285. doi: 10.1007/s12613-023-2751-1
|
[4] |
Y. Ma, R. Zheng, Z.Y. Gao, et al., Multiphase-field simulation of austenite reversion in medium-Mn steels, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 847. doi: 10.1007/s12613-021-2282-6
|
[5] |
M.T. Kim, T.M. Park, K.H. Baik, W.S. Choi, and J. Han, Effects of cold rolling reduction ratio on microstructures and tensile properties of intercritically annealed medium-Mn steels, Mater. Sci. Eng. A, 752(2019), p. 43. doi: 10.1016/j.msea.2019.02.091
|
[6] |
W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, and H. Dong, Microstructure and mechanical properties of Fe–0.2C–5Mn steel processed by ART-annealing, Mater. Sci. Eng. A, 528(2011), No. 22-23, p. 6661. doi: 10.1016/j.msea.2011.05.039
|
[7] |
M.H. Cai, W.J. Zhu, N. Stanford, L.B. Pan, Q. Chao, and P.D. Hodgson, Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy, Mater. Sci. Eng. A, 653(2016), p. 35. doi: 10.1016/j.msea.2015.11.103
|
[8] |
S. Lee and B.C. De Cooman, Annealing temperature dependence of the tensile behavior of 10 pct Mn multi-phase TWIP-TRIP steel, Metall. Mater. Trans. A, 45(2014), No. 13, p. 6039. doi: 10.1007/s11661-014-2540-6
|
[9] |
Y.J. Wang, S. Zhao, R.B. Song, and B. Hu, Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 422. doi: 10.1007/s12613-020-2206-x
|
[10] |
S.P. Neog, A. Lodh, A. Karmakar, et al., Insights into the stability of retained austenite during wear, Philos. Mag., 103(2023), No. 3, p. 203. doi: 10.1080/14786435.2022.2139421
|
[11] |
M.J. Zhao, L.H. Jiang, C.M. Li, L. Huang, C.Y. Sun, J.J. Li, and Z.H. Guo, Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 323. doi: 10.1007/s12613-023-2736-0
|
[12] |
J. Hu, X.Y. Li, Q.W. Meng, L.Y. Wang, Y.Z. Li, and W. Xu, Tailoring retained austenite and mechanical property improvement in Al–Si–V containing medium Mn steel via direct intercritical rolling, Mater. Sci. Eng. A, 855(2022), art. No. 143904. doi: 10.1016/j.msea.2022.143904
|
[13] |
X.G. Wang and M.X. Huang, Temperature dependence of Lüders strain and its correlation with martensitic transformation in a medium Mn transformation-induced plasticity steel, J. Iron Steel Res. Int., 24(2017), No. 11, p. 1073. doi: 10.1016/S1006-706X(17)30156-5
|
[14] |
M. Callahan, O. Hubert, F. Hild, A. Perlade, and J.H. Schmitt, Coincidence of strain-induced TRIP and propagative PLC bands in medium Mn steels, Mater. Sci. Eng. A, 704(2017), p. 391. doi: 10.1016/j.msea.2017.08.042
|
[15] |
W.Q. Liu and J.H. Lian, Stress-state dependence of dynamic strain aging: Thermal hardening and blue brittleness, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 854. doi: 10.1007/s12613-021-2250-1
|
[16] |
B.H. Sun, N. Vanderesse, F. Fazeli, et al., Discontinuous strain-induced martensite transformation related to the Portevin–Le Chatelier effect in a medium manganese steel, Scripta Mater., 133(2017), p. 9. doi: 10.1016/j.scriptamat.2017.01.022
|
[17] |
F. Yang, H.W. Luo, E.X. Pu, S.L. Zhang, and H. Dong, On the characteristics of Portevin–Le Chatelier bands in cold-rolled 7Mn steel showing transformation-induced plasticity, Int. J. Plast., 103(2018), p. 188. doi: 10.1016/j.ijplas.2018.01.010
|
[18] |
L.P. Tang, P.F. Wei, Z.L. Hu, and Q. Pang, Microstructure and mechanical properties stability of pre-hardening treatment in Al–Cu alloys for pre-hardening forming process, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 539. doi: 10.1007/s12613-023-2758-7
|
[19] |
F. Yang, J. Zhou, Y. Han, P. Liu, H.W. Luo, and H. Dong, A novel cold-rolled medium Mn steel with an ultra-high product of tensile strength and elongation, Mater. Lett., 258(2020), art. No. 126804. doi: 10.1016/j.matlet.2019.126804
|
[20] |
S. Yan, T.L. Li, T.S. Liang, J.Q. Chen, Y. Zhao, and X.H. Liu, By controlling recrystallization degree: A plain medium Mn steel overcoming Lüders deformation and low yield-to-tensile ratio simultaneously, Mater. Sci. Eng. A, 758(2019), p. 79. doi: 10.1016/j.msea.2019.05.012
|
[21] |
H.S. Wang, Y.X. Zhang, G. Yuan, et al., Significance of cold rolling reduction on Lüders band formation and mechanical behavior in cold-rolled intercritically annealed medium-Mn steel, Mater. Sci. Eng. A, 737(2018), p. 176. doi: 10.1016/j.msea.2018.09.045
|
[22] |
Z.C. Li, H. Ding, R.D.K. Misra, and Z.H. Cai, Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands, Mater. Sci. Eng. A, 679(2017), p. 230. doi: 10.1016/j.msea.2016.10.042
|
[23] |
J. Wu, Y. Hovanski, and M. Miles, Digital image correlation characterization and formability analysis of aluminum alloy TWB during forming, Materials, 15(2022), No. 15, art. No. 5291. doi: 10.3390/ma15155291
|
[24] |
T. Wang, J. Hu, and R.D.K. Misra, Microstructure evolution and strain behavior of a medium Mn TRIP/TWIP steel for excellent combination of strength and ductility, Mater. Sci. Eng. A, 753(2019), p. 99. doi: 10.1016/j.msea.2019.03.021
|
[25] |
B.H. Sun, F. Fazeli, C. Scott, N. Brodusch, R. Gauvin, and S. Yue, The influence of silicon additions on the deformation behavior of austenite–ferrite duplex medium manganese steels, Acta Mater., 148(2018), p. 249. doi: 10.1016/j.actamat.2018.02.005
|
[26] |
P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock, Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel, Metall. Mater. Trans. A, 42(2011), No. 12, p. 3691. doi: 10.1007/s11661-011-0687-y
|
[27] |
C. Wang, W.Q. Cao, J. Shi, C.X. Huang, and H. Dong, Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel, Mater. Sci. Eng. A, 562(2013), p. 89. doi: 10.1016/j.msea.2012.11.044
|
[28] |
X.G. Wang, L. Wang, and M.X. Huang, Kinematic and thermal characteristics of Lüders and Portevin–Le Châtelier bands in a medium Mn transformation-induced plasticity steel, Acta Mater., 124(2017), p. 17. doi: 10.1016/j.actamat.2016.10.069
|
[29] |
E.J. Seo, J.K. Kim, L. Cho, J. Mola, C.Y. Oh, and B.C. De Cooman, Micro-plasticity of medium Mn austenitic steel: Perfect dislocation plasticity and deformation twinning, Acta Mater., 135(2017), p. 112. doi: 10.1016/j.actamat.2017.06.014
|
[30] |
M. Zhang, W.J. Wang, B.D. Zhang, Q.Y. Cen, and J. Liu, Influence of pre-straining on the low-cycle fatigue performance of Fe–0.1C–5Mn medium manganese steel, Int. J. Fatigue, 165(2022), art. No. 107186. doi: 10.1016/j.ijfatigue.2022.107186
|
[31] |
K. Steineder, D. Krizan, R. Schneider, C. Béal, and C. Sommitsch, On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels, Acta Mater., 139(2017), p. 39. doi: 10.1016/j.actamat.2017.07.056
|
[32] |
B.H. Sun, D. Palanisamy, D. Ponge, et al., Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite, Acta Mater., 164(2019), p. 683. doi: 10.1016/j.actamat.2018.11.029
|
[33] |
B.V. Narasimha Rao and G. Thomas, Structure-property relations and the design of Fe-4Cr-C base structural steels for high strength and toughness, Metall. Trans. A, 11(1980), No. 3, p. 441. doi: 10.1007/BF02654568
|
[34] |
E. De Moor, D.K. Matlock, J.G. Speer, and M.J. Merwin, Austenite stabilization through manganese enrichment, Scripta Mater., 64(2011), No. 2, p. 185. doi: 10.1016/j.scriptamat.2010.09.040
|
[35] |
J. Talonen, H. Hänninen, P. Nenonen, and G. Pape, Effect of strain rate on the strain-induced γ → α′-martensite transformation and mechanical properties of austenitic stainless steels, Metall. Mater. Trans. A, 36(2005), No. 2, p. 421. doi: 10.1007/s11661-005-0313-y
|