Cite this article as: |
Xiuli Han, Bowen Duan, Lei Liu, Shilong Fang, and Weiwei Wang, Preparation and applications of calcium ferrite as a functional material: A review, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2966-9 |
Xiuli Han E-mail: hanxl@ncst.edu.cn
Bowen Duan E-mail: duanbw1688@stu.ncst.edu.cn
[1] |
X. Zhao, N.T. Gao, S.C. Wu, S.Z. Li, and S.J. Wu, Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO2, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 786. doi: 10.1007/s12613-023-2742-2
|
[2] |
Y. Ugata and N. Yabuuchi, New functionality of electrode materials with highly concentrated electrolytes, Trends Chem., 5(2023), No. 9, p. 672. doi: 10.1016/j.trechm.2023.07.003
|
[3] |
X.Y. Wang, S. Jan, Z.Y. Wang, and X.B. Jin, Solid Bi2O3-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO2, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 803. doi: 10.1007/s12613-023-2770-y
|
[4] |
J.B. Miao, Y.X. Du, R.T. Li, et al., Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 33. doi: 10.1007/s12613-023-2665-y
|
[5] |
A. Singh, R. Bhardwaj, R.K. Mishra, A.K. Sundramoorthy, V. Gupta, and S. Arya, Potential of functional gel polymers as electrolytes for supercapacitors, Ionics, 29(2023), No. 10, p. 3831. doi: 10.1007/s11581-023-05112-w
|
[6] |
P. Zhang, Y.H. Wu, H.R. Sun, J.Q. Zhao, Z.M. Cheng, and X.H. Kang, MnO2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1735. doi: 10.1007/s12613-021-2272-8
|
[7] |
J.X. Li, H. Yuan, W.J. Zhang, R.J. Zhu, and Z.B. Jiao, Construction of BiVO4/BiOCl@C Z-scheme heterojunction for enhanced photoelectrochemical performance, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1971. doi: 10.1007/s12613-022-2481-9
|
[8] |
T. Zhang, P.F. Wang, Y. Li, Y.P. Bao, T.T. Lim, and S.H. Zhan, Advances in dual-functional photocatalysis for simultaneous reduction of hexavalent chromium and oxidation of organics in wastewater, Environ. Funct. Mater., 2(2023), No. 1, p. 1.
|
[9] |
J.S. Yuan, Y. Zhang, X.Y. Zhang, L. Zhao, H.L. Shen, and S.G. Zhang, Template-free synthesis of core–shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 177. doi: 10.1007/s12613-022-2473-9
|
[10] |
D. Ali, I. Muneer, F. Bashir, et al., Sol–gel derived iron-manganese oxide nanoparticles: A promising dual-functional material for solar photocatalysis and antimicrobial applications, J. Sol Gel Sci. Technol., 107(2023), No. 2, p. 452. doi: 10.1007/s10971-023-06123-9
|
[11] |
Y. Xue, X.M. Liu, N. Zhang, Y. Shao, and C.C. Xu, Enhanced photocatalytic performance of iron oxides@HTCC fabricated from zinc extraction tailings for methylene blue degradation: Investigation of the photocatalytic mechanism, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2364. doi: 10.1007/s12613-023-2723-5
|
[12] |
J. Arshad, F.M.A. Alzahrani, S. Munir, et al., Integration of 2D graphene oxide sheets with MgFe2O4/ZnO heterojunction for improved photocatalytic degradation of organic dyes and benzoic acid, Ceram. Int., 49(2023), No. 11, p. 18988. doi: 10.1016/j.ceramint.2023.03.024
|
[13] |
E. Einafshar, N. Einafshar, and M. Khazaei, Recent advances in MXene quantum dots: A platform with unique properties for general-purpose functional materials with novel biomedical applications, Top. Curr. Chem., 381(2023), No. 5, art. No. 27. doi: 10.1007/s41061-023-00439-4
|
[14] |
S.K. Bhattacharyya, S. Maiti, N.C. Das, and S. Banerjee, Antibacterial and antiviral functional materials based on polymer nanocomposites [in] K. Deshmukh and C.M. Hussain, eds., Antibacterial and Antiviral Functional Materials, Vol. 1, ACS Publication, New York, 2023, p. 171.
|
[15] |
R. Sanchis-Gual, M. Coronado-Puchau, T. Mallah, and E. Coronado, Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism, Coord. Chem. Rev., 480(2023), art. No. 215025. doi: 10.1016/j.ccr.2023.215025
|
[16] |
J.L. Su, J. Teng, Z.L. Xu, and Y. Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 724. doi: 10.1007/s12613-020-1987-2
|
[17] |
J.D.G. Hamilton, B.F. Hoskins, W.G. Mumme, W.E. Borbidge, and M.A. Montague, The crystal structure and crystal chemistry of Ca2.3Mg0.8Al1.5Si1.1Fe8.3O20 (SFCA): solid solution limits and selected phase relationships of SFCA in the SiO2–Fe2O3–CaO–Al2O3 system, Neues Jahrb. Mineral. Abh., 161(1989), No. 1, p. 1.
|
[18] |
W.G. Mumme, J.M.F. Clout, and R.W. Gable, The crystal structure of SFCA-I, Ca3.18 Fe3+14.66Al1.34 Fe2+0.82O28, a homologue of the aenigmatite structure type, and new crystal structure refinements of ß-CFF, Ca2.99Fe3+14.30Fe2+0.55O25 and Mg-free SFCA, Ca2.45Fe3+9.04 Al1.74Fe2+0.16Si0.6O20, Neues Jahrb. Mineral. Abh., 173(1998), No. 1, p. 93.
|
[19] |
N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton, Silico-ferrite of calcium and aluminum (SFCA) iron ore sinter bonding phases: new insights into their formation during heating and cooling, Metall. Mater. Trans. B, 43(2012), p. p.1344.
|
[20] |
K. Sugiyama, A. Monkawa, and T. Sugiyama, Crystal structure of the SFCAM phase Ca2(Ca, Fe, Mg, Al)6(Fe, Al, Si)6O20, ISIJ Int., 45(2005), No. 4, p. 560. doi: 10.2355/isijinternational.45.560
|
[21] |
G. Lal, K. Punia, S.N. Dolia, P.A. Alvi, S. Dalela, and S. Kumar, Rietveld refinement, Raman, optical, dielectric, Mössbauer and magnetic characterization of superparamagnetic fcc-CaFe2O4 nanoparticles, Ceram. Int., 45(2019), No. 5, p. 5837. doi: 10.1016/j.ceramint.2018.12.050
|
[22] |
S. Khezerlou, M. Babazadeh, A. Mehrizad, P. Gharbani, and M. Es’haghi, Preparation of hydroxyapatite-calcium ferrite composite for application in loading and sustainable release of amoxicillin: Optimization and modeling of the process by response surface methodology and artificial neural network, Ceram. Int., 47(2021), No. 17, p. 24287. doi: 10.1016/j.ceramint.2021.05.140
|
[23] |
T.L. Ajeesha, A. Manikandan, A. Anantharaman, et al., Structural investigation of Cu doped calcium ferrite (Ca1− xCu xFe2O4; x = 0, 0.2, 0.4, 0.6, 0.8, 1) nanomaterials prepared by co-precipitation method, J. Mater. Res. Technol., 18(2022), p. 705. doi: 10.1016/j.jmrt.2022.02.081
|
[24] |
A. Mehrizad, Prompt loading and prolonged release of metronidazole by calcium ferrite–carbon nanotubes carrier: Optimization and modeling of the process by RSM and ANN, Diamond Relat. Mater., 135(2023), art. No. 109899. doi: 10.1016/j.diamond.2023.109899
|
[25] |
M. Naseri, E. Naderi, and A.R. Sadrolhosseini, Effect of phase transformation on physical and biological properties of PVA/CaFe2O4 nanocomposite, Fibres Polym., 17(2016), No. 10, p. 1667. doi: 10.1007/s12221-016-6030-x
|
[26] |
X. Liu, Y.H. Zhang, Y.S. Jia, et al., Visible light-responsive carbon-decorated p-type semiconductor CaFe2O4 nanorod photocatalyst for efficient remediation of organic pollutants, Chin. J. Catal., 38(2017), No. 10, p. 1770. doi: 10.1016/S1872-2067(17)62888-2
|
[27] |
A. Šutka, M. Kodu, R. Pärna, et al., Orthorhombic CaFe2O4: A promising p-type gas sensor, Sens. Actuators B, 224(2016), p. 260. doi: 10.1016/j.snb.2015.10.041
|
[28] |
A. Manohar and C. Krishnamoorthi, Structural, optical, dielectric and magnetic properties of CaFe2O4 nanocrystals prepared by solvothermal reflux method, J. Alloys Compd., 722(2017), p. 818. doi: 10.1016/j.jallcom.2017.06.145
|
[29] |
A.C. Gandhi, R. Das, F.C. Chou, and J.G. Lin, Magnetocrystalline two-fold symmetry in CaFe2O4 single crystal, J. Phys. Condens. Matter, 29(2017), No. 17, art. No. 175802. doi: 10.1088/1361-648X/aa61f2
|
[30] |
S. Kamaraj, U.M. Palanisamy, M.S.B. Kadhar Mohamed, A. Gangasalam, G.A. Maria, and R. Kandasamy, Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier, Eur. J. Pharm. Sci., 116(2018), p. 48. doi: 10.1016/j.ejps.2018.01.023
|
[31] |
R.B. Sosman and H.E. Merwin, Preliminary report on the system, lime: ferric oxide, J. Wash. Acad. Sci., 6(1916), No. 15, p. 532.
|
[32] |
B. Phillips and A. Muan, Phase equilibria in the system CaO–iron oxide in air and at 1 atm. O2 pressure, J. Am. Ceram. Soc., 41(1958), No. 11, p. 445. doi: 10.1111/j.1151-2916.1958.tb12893.x
|
[33] |
H.I. Saleh, Synthesis and formation mechanisms of calcium ferrite compounds, J. Mater. Sci. Technol., 20(2004), No. 5, p. 530.
|
[34] |
E.F. Bertaut, P. Blum, and A. Sagnières, Structure du ferrite bicalcique et de la brownmillerite, Acta Crystallogr., 12(1959), No. 2, p. 149. doi: 10.1107/S0365110X59000433
|
[35] |
F. Liao, Mechanism of Al2O3 Effect in Processes of Formation and Reduction of Complex Calcium Ferrites (SFCA ) [Dissertation], University of Science and Technology Beijing, Beijing, 2020.
|
[36] |
X. Ding, Study of the Mechanism on Formation of Calcium Ferrite in the Fe2O3–CaO–SiO2 System [Dissertation], University of Science and Technology Beijing, Beijing, 2015.
|
[37] |
X. Ding and X.M. Guo, The formation process of silico-ferrite of calcium (SFC) from binary calcium ferrite, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1221. doi: 10.1007/s11663-014-0041-z
|
[38] |
E.S. Grew, U. Hålenius, M. Pasero, and J. Barbier, Recommended nomenclature for the sapphirine and surinamite groups (sapphirine supergroup), Mineral. Mag., 72(2008), No. 4, p. 839. doi: 10.1180/minmag.2008.072.4.839
|
[39] |
K. Inoue and T. Ikeda, The solid solution state and the crystal structure of calcium ferrite formed in lime-fluxed iron ores, Tetsu-to-Hagane, 68(1982), No. 15, p. 2190. doi: 10.2355/tetsutohagane1955.68.15_2190
|
[40] |
S. Nicol, J. Chen, M.I. Pownceby, and N.A.S. Webster, A review of the chemistry, structure and formation conditions of silico-ferrite of calcium and aluminum (‘SFCA’) phases, ISIJ Int., 58(2018), No. 12, p. 2157. doi: 10.2355/isijinternational.ISIJINT-2018-203
|
[41] |
L.H. Hsieh and J.A. Whiteman, Effect of oxygen potential on mineral formation in lime-fluxed iron ore sinter, ISIJ Int., 29(1989), No. 8, p. 625. doi: 10.2355/isijinternational.29.625
|
[42] |
Z.R. Su, L.H. Shen, J.C. Yan, and L.L. Wang, Characteristics of rice-hull chemical looping gasification with calcium-ferrite as oxygen carrier, Acta Petrolei Sin. (Pet. Process. Sect.), 36(2020), No. 6, p. 1219.
|
[43] |
C. Zhao, F. Wang, and J.F. Zhu, Analysis of the phase and morphology calcium ferrite powder prepared by high energy milling, J. Synth. Cryst., 41(2012), No. 1, p. 85.
|
[44] |
N. Yang and X.M. Guo, Effect of Al2O3 on the composition and microstructures of crystal products of CaO–Fe2O3 melt, Iron Steel Vanadium Titanium, 40(2019), No. 2, p. 132.
|
[45] |
K. Zöll, T. Manninger, V. Kahlenberg, H. Krüger, and P. Tropper, Investigations on the crystal structure and the stability field of FCAM-I (Ca3MgAl6Fe10O28), an iso-structure to SFCA-I, Metall. Mater. Trans. B, 48(2017), No. 4, p. 2207. doi: 10.1007/s11663-017-0988-7
|
[46] |
A.K. Das, R. Govindaraj, and A. Srinivasan, Structural and magnetic properties of Sol–gel derived CaFe2O4 nanoparticles, J. Magn. Magn. Mater., 451(2018), p. 526. doi: 10.1016/j.jmmm.2017.11.102
|
[47] |
N.S. Alsaiari, A. Amari, K.M. Katubi, F.M. Alzahrani, F. Ben Rebah, and M.A. Tahoon, The synthesis of magnetic nitrogen-doped graphene oxide nanocomposite for the removal of reactive orange 12 dye, Adsorpt. Sci. Technol., 2022(2022), art. No. 9417542. doi: 10.1155/2022/9417542
|
[48] |
H.J. Sun, The Research of the Preparation and Properties of p-Type Semiconductor CaFe2O4 Doping with Transition Metal [Dissertation], Hebei University of Technology, Tianjin, 2016.
|
[49] |
H.Y. Xue, Photocatalytic activity and mechanism of nano-CaFe2O4, Inorg. Chem. Ind., 49(2017), No. 9, p. 85.
|
[50] |
C. Liu, B.S. Zou, A.J. Rondinone, and Z.J. Zhang, Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings, J. Am. Chem. Soc.,122(2000), No. 26, p. 6263. doi: 10.1021/ja000784g
|
[51] |
B.L. Shinde, L.A. Dhale, U.M. Mandle, and K.S. Lohar, An efficient one-pot synthesis of benzimidazoles using magnetically recoverable catalyst chromium doped nickel copper zinc spinel ferrite, Int. Res. J. Pharm., 10(2019), No. 8, p. 50. doi: 10.7897/2230-8407.1008245
|
[52] |
N.H. Sulaiman, M.J. Ghazali, J. Yunas, A. Rajabi, B.Y. Majlis, and M. Razali, Synthesis and characterization of CaFe2O4 nanoparticles via co-precipitation and auto-combustion methods, Ceram. Int., 44(2018), No. 1, p. 46. doi: 10.1016/j.ceramint.2017.08.203
|
[53] |
Z.H. Han, H.F. Kang, N.N. Yuan, X.T. Guo, J.J. Ma, and Q.J. Guo, Retention mechanism of calcium ferrite and compositions of ash on selenium during chemical looping gasification, Particuology, 79(2023), p. 143. doi: 10.1016/j.partic.2022.11.002
|
[54] |
X.J. Lan, S.H. Liu, Y.J. Wang, and Q.W. Zhang, Preparation and photocatalytic properties of calcium ferrite nanoparticles by two methods, J. Dalian Jiaotong Univ., 40(2019), No. 1, p. 90.
|
[55] |
F. Qi, Preparation and catalytic performance of composite CaCO3/CaFe2O4 catalyst, Inorg. Chem. Ind., 50(2018), No. 03, p. 77.
|
[56] |
Y.X. Cui, J.H. Han, W.D. Wang, L.K. Zhang, Y.M. Li, and P. Sun, Adsorption performance and mechanism of magnetic porous activated carbon/calcium ferrite composite for thorium (IV), Chin. J. Nonferrous Met., 32(2022), No. 1, p. 236.
|
[57] |
A.M. EL-Rafei, A.S. El-Kalliny, and T.A. Gad-Allah, Electrospun magnetically separable calcium ferrite nanofibers for photocatalytic water purification, J. Magn. Magn. Mater., 428(2017), p. 92. doi: 10.1016/j.jmmm.2016.12.020
|
[58] |
R.N. Araujo, E.P. Nascimento, H.C.T. Firmino, et al., α-Fe2O3 fibers: An efficient photocatalyst for dye degradation under visible light, J. Alloys Compd., 882(2021), art. No. 160683. doi: 10.1016/j.jallcom.2021.160683
|
[59] |
R. Dom, H.G. Kim, and P.H. Borse, Photo chemical hydrogen generation from orthorhombic CaFe2O4 nanoparticles synthesized by different methods, ChemistrySelect, 2(2017), No. 8, p. 2556. doi: 10.1002/slct.201601956
|
[60] |
J. Zhao, H. Su, H.B. Zuo, J.S. Wang, and Q.G. Xue, The mechanism of preparation calcium ferrite from desulfurization gypsum produced in sintering, J. Cleaner Prod., 267(2020), art. No. 122002. doi: 10.1016/j.jclepro.2020.122002
|
[61] |
U.I. Gaya and A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, J. Photochem. Photobiol. C, 9(2008), No. 1, p. 1. doi: 10.1016/j.jphotochemrev.2007.12.003
|
[62] |
X.B. Chen, Titanium dioxide nanomaterials and their energy applications, Chin. J. Catal., 30(2009), No. 8, p. 839. doi: 10.1016/S1872-2067(08)60126-6
|
[63] |
Z.J. Zhang and W.Z. Wang, Solution combustion synthesis of CaFe2O4 nanocrystal as a magnetically separable photocatalyst, Mater. Lett., 133(2014), p. 212. doi: 10.1016/j.matlet.2014.07.050
|
[64] |
K. Sekizawa, T. Nonaka, T. Arai, and T. Morikawa, Structural improvement of CaFe2O4 by metal doping toward enhanced cathodic photocurrent, ACS Appl. Mater. Interfaces, 6(2014), No. 14, p. 10969. doi: 10.1021/am502500y
|
[65] |
S. Shenoy, C. Chuaicham, T. Okumura, K. Sekar, and K. Sasaki, Simple tactic polycondensation synthesis of Z-scheme quasi-polymeric g-C3N4/CaFe2O4 composite for enhanced photocatalytic water depollution via p-n heterojunction, Chem. Eng. J., 453(2023), art. No. 139758. doi: 10.1016/j.cej.2022.139758
|
[66] |
P.H. Borse, J.Y. Kim, J.S. Lee, et al., Ti-dopant-enhanced photocatalytic activity of a CaFe2O4/MgFe2O4 bulk heterojunction under visible-light irradiation, J. Korean Phys. Soc., 61(2012), No. 1, p. 73. doi: 10.3938/jkps.61.73
|
[67] |
T. Vangijzegem, D. Stanicki, and S. Laurent, Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics, Expert Opin. Drug Delivery, 16(2019), No. 1, p. 69. doi: 10.1080/17425247.2019.1554647
|
[68] |
S. Palanisamy and Y.M. Wang, Superparamagnetic iron oxide nanoparticulate system: Synthesis, targeting, drug delivery and therapy in cancer, Dalton Trans., 48(2019), No. 26, p. 9490. doi: 10.1039/C9DT00459A
|
[69] |
M. Amiri, M. Salavati-Niasari, and A. Akbari, Magnetic nanocarriers: Evolution of spinel ferrites for medical applications, Adv. Colloid Interface Sci., 265(2019), p. 29. doi: 10.1016/j.cis.2019.01.003
|
[70] |
S.A. Hassanzadeh-Tabrizi, H. Norbakhsh, R. Pournajaf, and M. Tayebi, Synthesis of mesoporous cobalt ferrite/hydroxyapatite core-shell nanocomposite for magnetic hyperthermia and drug release applications, Ceram. Int., 47(2021), No. 13, p. 18167. doi: 10.1016/j.ceramint.2021.03.135
|
[71] |
A. Nigam and S.J. Pawar, Structural, magnetic, and antimicrobial properties of zinc doped magnesium ferrite for drug delivery applications, Ceram. Int., 46(2020), No. 4, p. 4058. doi: 10.1016/j.ceramint.2019.10.243
|
[72] |
B.K. Purushothaman, M. Harsha S, P.U. Maheswari, and K.M. Meera Sheriffa Begum, Magnetic assisted curcumin drug delivery using folate receptor targeted hybrid casein-calcium ferrite nanocarrier, J. Drug Delivery Sci. Technol., 52(2019), p. 509. doi: 10.1016/j.jddst.2019.05.010
|
[73] |
A. Tomitaka, A. Hirukawa, T. Yamada, S. Morishita, and Y. Takemura, Biocompatibility of various ferrite nanoparticles evaluated by in vitro cytotoxicity assays using HeLa cells, J. Magn. Magn. Mater., 321(2009), No. 10, p. 1482. doi: 10.1016/j.jmmm.2009.02.058
|
[74] |
Y. Jumril, S. Noor Humam, and M.J. Ghazali, Synthesis of calcium ferrite nanoparticles (CaFe2O4-NPs) using auto-combustion method for targeted drug delivery, Key Eng. Mater., 775(2018), p. 115. doi: 10.4028/www.scientific.net/KEM.775.115
|
[75] |
L. Khanna and N.K. Verma, Synthesis, characterization and in vitro cytotoxicity study of calcium ferrite nanoparticles, Mater. Sci. Semicond. Process., 16(2013), No. 6, p. 1842. doi: 10.1016/j.mssp.2013.07.016
|
[76] |
H. Yang, C.X. Zhang, X.Y. Shi, et al., Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging, Biomaterials, 31(2010), No. 13, p. 3667. doi: 10.1016/j.biomaterials.2010.01.055
|
[77] |
G. Baldi, D. Bonacchi, M.C. Franchini, et al., Synthesis and coating of cobalt ferrite nanoparticles: A first step toward the obtainment of new magnetic nanocarriers, Langmuir, 23(2007), No. 7, p. 4026. doi: 10.1021/la063255k
|
[78] |
X.G. Liu, Z. Yuan, T.D. Zhao, H. Zhang, L.J. Guo, and Q. Tao, Synthesis of monodispersed calcium ferrite (CaFe2O4) nanocubes with hydrophilic surface for pH-induced drug release and tongue squamous cell carcinoma treatment, Phys. E, 140(2022), art. No. 115178. doi: 10.1016/j.physe.2022.115178
|
[79] |
L. Khanna and N.K. Verma, Biocompatibility and superparamagnetism in novel silica/CaFe2O4 nanocomposite, Mater. Lett., 128(2014), p. 376. doi: 10.1016/j.matlet.2014.04.168
|
[80] |
L. Zhang, X.L. Li, D. Liu, Y. Ying, L.Q. Jiang, and S.L. Che, Influence of particle size and Ca addition on the magnetic performance and microstructure of MnZn ferrite, Mater. Sci. Forum, 787(2014), p. 362. doi: 10.4028/www.scientific.net/MSF.787.362
|
[81] |
P. Thakur, S. Taneja, D. Chahar, B. Ravelo, and A. Thakur, Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles, J. Magn. Magn. Mater., 530(2021), art. No. 167925. doi: 10.1016/j.jmmm.2021.167925
|
[82] |
V.J. Angadi, K.M. Batoo, S. Hussain, H.R. Lakshmiprasanna, K. Manjunatha, and S.O. Manjunatha, Role of superparamagnetic nanoparticles in humidity sensing behavior of holmium doped manganese-bismuth ferrites for relative humidity sensor applications, J. Mater. Sci. Mater. Electron., 33(2022), No. 31, p. 24308. doi: 10.1007/s10854-022-09151-3
|
[83] |
S. Kumari, N. Dhanda, A. Thakur, et al., Nano Ca–Mg–Zn ferrites as tuneable photocatalyst for UV light-induced degradation of rhodamine B dye and antimicrobial behavior for water purification, Ceram. Int., 49(2023), No. 8, p. 12469. doi: 10.1016/j.ceramint.2022.12.107
|
[84] |
J.C. Maxwell, A Treatise on Electricity snd Magnetism, Oxford: Clarendon Press, 1873.
|
[85] |
W.A. Yager, The distribution of relaxation times in typical dielectrics, J. Appl. Phys., 7(1936), No. 12, p. 434.
|
[86] |
P. Shankar, B. Shetty, A.L. Jayasheelan, N.R.S. Reddy, and C.S. Prakash, Structural, electrical, and impedance spectroscopy studies of barium substituted nano calcium ferrites synthesized by solution combustion method, J. Nanostruct., 9(2019), No. 2, p. 202.
|
[87] |
H.C. Gomes, S.S. Teixeira, and M.P.F. Graça, Synthesis of calcium ferrite for energy storage applications, J. Alloys Compd., 921(2022), art. No. 166026. doi: 10.1016/j.jallcom.2022.166026
|
[88] |
S. Kumari, N. Dhanda, A. Thakur, S. Singh, and P. Thakur, Investigation of calcium substitution on magnetic and dielectric properties of Mg–Zn nano ferrites, Mater. Chem. Phys., 297(2023), art. No. 127394. doi: 10.1016/j.matchemphys.2023.127394
|
[89] |
C.G.M. Lima, A.J.M. Araújo, R.M. Silva, et al., Electrical assessment of brownmillerite-type calcium ferrite materials obtained by proteic sol–gel route and by solid-state reaction using mollusk shells, J. Solid State Chem., 299(2021), art. No. 122172. doi: 10.1016/j.jssc.2021.122172
|
[90] |
D.D. Miller and R. Siriwardane, CaFe2O4 oxygen carrier characterization during the partial oxidation of coal in the chemical looping gasification application, Appl. Energy, 224(2018), p. 708. doi: 10.1016/j.apenergy.2018.05.035
|
[91] |
M.S. Sukma, Y.Y. Zheng, P. Hodgson, and S.A. Scott, Understanding the behavior of dicalcium ferrite (Ca2Fe2O5) in chemical looping syngas production from CH4, Energy Fuels, 36(2022), No. 17, p. 9410. doi: 10.1021/acs.energyfuels.2c01065
|
[92] |
Z. Sun, C.K. Russell, and M.H. Fan, Effect of calcium ferrites on carbon dioxide gasification reactivity and kinetics of pine wood derived char, Renewable Energy, 163(2021), p. 445. doi: 10.1016/j.renene.2020.09.026
|
[93] |
W.G. Lee and M.S. Song, CO2 adsorption reactions of synthetic calcium aluminum ferrite (CAF), Appl. Sci., 12(2022), No. 13, art. No. 6677. doi: 10.3390/app12136677
|
[94] |
H.R. Ong, M.M. Rahman Khan, A. Yousuf, N.A. Hussain, and C.K. Cheng, Synthesis and characterization of a CaFe2O4 catalyst for oleic acid esterification, RSC Adv., 5(2015), No. 121, p. 100362. doi: 10.1039/C5RA17857F
|
[95] |
G.S. Wang, D.X. Zhao, Y.Y. Ma, et al., Synthesis of calcium ferrite nanocrystal clusters for magnetorheological fluid with enhanced sedimentation stability, Powder Technol., 322(2017), p. 47. doi: 10.1016/j.powtec.2017.08.065
|
[96] |
R.A. Candeia, M.I.B. Bernardi, E. Longo, I.M.G. Santos, and A.G. Souza, Synthesis and characterization of spinel pigment CaFe2O4 obtained by the polymeric precursor method, Mater. Lett., 58(2004), No. 5, p. 569. doi: 10.1016/S0167-577X(03)00563-9
|