Chao Tan, Junling Lü, Chunchi Zhang, Dong Liang, Lei Yang, and Zegao Wang, Force and impulse multi-sensor based on flexible gate dielectric field effect transistor, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 214-220. https://doi.org/10.1007/s12613-024-2968-7
Cite this article as:
Chao Tan, Junling Lü, Chunchi Zhang, Dong Liang, Lei Yang, and Zegao Wang, Force and impulse multi-sensor based on flexible gate dielectric field effect transistor, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 214-220. https://doi.org/10.1007/s12613-024-2968-7
Research Article

Force and impulse multi-sensor based on flexible gate dielectric field effect transistor

+ Author Affiliations
  • Corresponding author:

    Zegao Wang    E-mail: zegao@scu.edu.cn

  • Received: 11 January 2024Revised: 1 July 2024Accepted: 3 July 2024Available online: 5 July 2024
  • Nowadays, force sensors play an important role in industrial production, electronic information, medical health, and many other fields. Two-dimensional material-based filed effect transistor (2D-FET) sensors are competitive with nano-level size, lower power consumption, and accurate response. However, few of them has the capability of impulse detection, which is a path function, expressing the cumulative effect of the force on the particle over a period of time. Herein, we fabricated the flexible polymethyl methacrylate (PMMA) gate dielectric MoS2-FET for force and impulse sensor application. We systematically investigated the responses of the sensor to constant force and varying forces, and achieved the conversion factors of the drain current signals (Ids) to the detected impulse ($ \overrightarrow{I} $). The applied force was detected and recorded by Ids with a low power consumption of ~30 nW. The sensitivity of the device can reach ~8000% and the 4 × 1 sensor array is able to detect and locate the normal force applied on it. Moreover, there was almost no performance loss for the device as left in the air for two months.
  • loading
  • Supplementary Information-s12613-024-2968-7.docx
  • [1]
    H. Xia, L. Wang, H. Zhang, et al., MXene/PPy@PDMS sponge-based flexible pressure sensor for human posture recognition with the assistance of a convolutional neural network in deep learning, Microsyst. Nanoeng., 9(2023), art. No. 155. doi: 10.1038/s41378-023-00605-0
    [2]
    B. Li, C.Y. Cai, Y. Liu, et al., Ultrasensitive mechanical/thermal response of a P(VDF-TrFE) sensor with a tailored network interconnection interface, Nat. Commun., 14(2023), art. No. 4000. doi: 10.1038/s41467-023-39476-4
    [3]
    X.G. Han, M.M. Huang, Z.T. Wu, et al., Advances in high-performance MEMS pressure sensors: Design, fabrication, and packaging, Microsyst. Nanoeng., 9(2023), No. 1, art. No. 156. doi: 10.1038/s41378-023-00620-1
    [4]
    C.M. Boutry, Y. Kaizawa, B.C. Schroeder, et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application, Nat. Electron., 1(2018), p. 314. doi: 10.1038/s41928-018-0071-7
    [5]
    S. Lee, A. Reuveny, J. Reeder, et al., A transparent bending-insensitive pressure sensor, Nat. Nanotechnol., 11(2016), p. 472. doi: 10.1038/nnano.2015.324
    [6]
    G. Feng, Q. Zhu, X. Liu, et al., A ferroelectric fin diode for robust non-volatile memory, Nat. Commun., 15(2024), art. No. 513. doi: 10.1038/s41467-024-44759-5
    [7]
    L. Zhang, H. Jin, H. Liao, et al., Ultra-broadband microwave absorber and high-performance pressure sensor based on aramid nanofiber, polypyrrole and nickel porous aerogel, Int. J. Miner. Metall. Mater., 31(2024), No. 8, p. 1912. doi: 10.1007/s12613-023-2820-5
    [8]
    L. Zhang, Y. Lu, S.W. Lu, et al., Lifetime health monitoring of fiber reinforced composites using highly flexible and sensitive MXene/CNT film sensor, Sens. Actuators A, 332(2021), art. No. 113148. doi: 10.1016/j.sna.2021.113148
    [9]
    O. Ahmed, X. Wang, M.V. Tran, and M.Z. Ismadi, Advancements in fiber-reinforced polymer composite materials damage detection methods: Towards achieving energy-efficient SHM systems, Composites Part B, 223(2021), art. No. 109136. doi: 10.1016/j.compositesb.2021.109136
    [10]
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol., 6(2011), p. 147. doi: 10.1038/nnano.2010.279
    [11]
    C. Tan, R. Tao, Z.H. Yang, et al., Tune the photoresponse of monolayer MoS2 by decorating CsPbBr3 perovskite nanoparticles, Chin. Chem. Lett., 34(2023), No. 7, art. No. 107979. doi: 10.1016/j.cclet.2022.107979
    [12]
    C. Dai, Y. Liu, and D. Wei, Two-dimensional field-effect transistor sensors: The road toward commercialization, Chem. Rev., 122(2022), No. 11, p. 10319. doi: 10.1021/acs.chemrev.1c00924
    [13]
    W. Chen, C. Li, Y. Tao, et al., Chitosan-based triboelectric materials for self-powered sensing at high temperatures, Int. J. Miner. Metall. Mater., 31(2024), No. 11, p. 2518. doi: 10.1007/s12613-024-2839-2
    [14]
    S.J. Kim, S. Mondal, B.K. Min, and C.G. Choi, Highly sensitive and flexible strain-pressure sensors with cracked paddy-shaped MoS2/graphene foam/ecoflex hybrid nanostructures, ACS Appl. Mater. Interfaces, 10(2018), No. 42, p. 36377. doi: 10.1021/acsami.8b11233
    [15]
    Z. Yan, D. Xu, Z. Lin, et al., Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes, Science, 375(2022), No. 6583, p. 852. doi: 10.1126/science.abl8941
    [16]
    M.J. Yin, Z.G. Yin, Y.X. Zhang, Q.D. Zheng, and A.P. Zhang, Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors, Nano Energy, 58(2019), p. 96. doi: 10.1016/j.nanoen.2019.01.032
    [17]
    Z.A. Lamport, M.R. Cavallari, K.A. Kam, C.K. McGinn, C. Yu, and I. Kymissis, Organic thin film transistors in mechanical sensors, Adv. Funct. Mater., 30(2020), No. 51, art. No. 2004700. doi: 10.1002/adfm.202004700
    [18]
    Z. Shen, C. Zhang, Y. Meng, and Z. Wang, Highly tunable, broadband, and negative photoresponse MoS2 photodetector driven by ion-gel gate dielectrics, ACS Appl. Mater. Interfaces, 14(2022), No. 28, p. 32412. doi: 10.1021/acsami.2c08341
    [19]
    Y.P. Zang, F.J. Zhang, D.Z. Huang, X.K. Gao, C.A. Di, and D.B. Zhu, Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection, Nat. Commun., 6(2015), art. No. 6269. doi: 10.1038/ncomms7269
    [20]
    A.H. Nguyen, M.C. Nguyen, S. Cho, et al., Double-gate thin film transistor with suspended-gate applicable to tactile force sensor, Nano Converg., 7(2020), No. 1, art. No. 31. doi: 10.1186/s40580-020-00240-9
    [21]
    Y. Zhang, Y. Zhang, H. Liu, et al., TiN/Fe2N/C composite with stable and broadband high-temperature microwave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 11, p. 2508. doi: 10.1007/s12613-024-2972-y
    [22]
    Z.Y. Liu, Z.G. Yin, Y. Jiang, and Q.D. Zheng, Dielectric interface passivation of polyelectrolyte-gated organic field-effect transistors for ultrasensitive low-voltage pressure sensors in wearable applications, Mater. Today Electron., 1(2022), art. No. 100001. doi: 10.1016/j.mtelec.2022.100001
    [23]
    W.W. Li, C.H. Lin, A. Rasheed, E. Iranmanesh, Q. Zhou, and K. Wang, A force and temperature sensor array based on 3-D field-coupled thin-film transistors for tactile intelligence, IEEE Trans. Electron Devices, 67(2020), No. 7, p. 2890. doi: 10.1109/TED.2020.2995582
    [24]
    Y.L. Geng, J. Xu, M.A. Bin Che Mahzan, et al., Mixed dimensional ZnO/WSe2 piezo-gated transistor with active millinewton force sensing, ACS Appl. Mater. Interfaces, 14(2022), No. 43, p. 49026. doi: 10.1021/acsami.2c15730
    [25]
    Y. Li, J. Sun, S. Li,et al., Three-dimensional graphene field effect transistors as self-powered vibration sensors, [in] 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS ), Tokyo, 2022, p. 75.
    [26]
    H.S. Kang, K.H. Lee, D.Y. Yang, B.H. You, and I.H. Song, Micro-accelerometer based on vertically movable gate field effect transistor, Nano Micro Lett., 7(2015), No. 3, p. 282. doi: 10.1007/s40820-015-0041-9
    [27]
    F. Menacer, A. Kadr, and Z. Dibi, Modeling of a smart nano force sensor using finite elements and neural networks, Int. J. Autom. Comput., 17(2020), No. 2, p. 279. doi: 10.1007/s11633-018-1155-6
    [28]
    W.D. Gao, C. Jia, Z.D. Jiang, X.Y. Zhou, L.B. Zhao, and D. Sun, The design and analysis of a novel micro force sensor based on depletion type movable gate field effect transistor, J. Microelectromech. Syst., 28(2019), No. 2, p. 298. doi: 10.1109/JMEMS.2019.2899621
    [29]
    Y.T. Zheng, J.J. Wei, J.L. Liu, et al., Carbon materials: The burgeoning promise in electronics, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 404. doi: 10.1007/s12613-021-2358-3
    [30]
    X.J. Song, J.P. Xu, L. Liu, and P.T. Lai, Comprehensive investigation on CF4/O2-plasma treating the interfaces of stacked gate dielectric in MoS2 transistors, Appl. Surf. Sci., 542(2021), art. No. 148437.
    [31]
    J.H. Wang, X.Z. Xu, T. Cheng, et al., Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire, Nat. Nanotechnol., 17(2022), No. 1, p. 33.
    [32]
    H.X. Huang, J.J. Zha, S.S. Li, and C.L. Tan, Two-dimensional alloyed transition metal dichalcogenide nanosheets: Synthesis and applications, Chin. Chem. Lett., 33(2022), No. 1, p. 163. doi: 10.1016/j.cclet.2021.06.004
    [33]
    X.Y. Niu, Y. Yu, J.D. Yao, M.G. Li, J. Sha, and Y.W. Wang, Preparation of black phosphorus quantum dots and the surface decoration effect on the monolayer MoS2 photodetectors, Chem. Phys. Lett., 772(2021), art. No. 138571. doi: 10.1016/j.cplett.2021.138571
    [34]
    D.S. Schneider, A. Grundmann, A. Bablich, et al., Highly responsive flexible photodetectors based on MOVPE grown uniform few-layer MoS2, ACS Photonics, 7(2020), No. 6, p. 1388. doi: 10.1021/acsphotonics.0c00361
    [35]
    Y.H. Liu, M. Tang, S. Zhang, et al., U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 479. doi: 10.1007/s12613-020-2154-5
    [36]
    X.A. Luo, Z.H. Peng, Z.G. Wang, and M.D. Dong, Layer-by-layer growth of AA-stacking MoS2 for tunable broadband phototransistors, ACS Appl. Mater. Interfaces, 13(2021), No. 49, p. 59154. doi: 10.1021/acsami.1c19906
    [37]
    S.W. Luo, C.P. Cullen, G.C. Guo, J.X. Zhong, and G.S. Duesberg, Investigation of growth-induced strain in monolayer MoS2 grown by chemical vapor deposition, Appl. Surf. Sci., 508(2020), art. No. 145126. doi: 10.1016/j.apsusc.2019.145126
    [38]
    R. Muñoz, E. López-Elvira, C. Munuera, et al., Direct growth of graphene-MoS2 heterostructure: Tailored interface for advanced devices, Appl. Surf. Sci., 581(2022), art. No. 151858. doi: 10.1016/j.apsusc.2021.151858
    [39]
    J.J. Zha, M.C. Luo, M. Ye, et al., Infrared photodetectors based on 2D materials and nanophotonics, Adv. Funct. Mater., 32(2022), No. 15, art. No. 2111970. doi: 10.1002/adfm.202111970
    [40]
    L.J. Bu, Y.M. Qiu, P. Wei, et al., Manipulating transistor operation via nonuniformly distributed charges in a polymer insulating electret layer, Phys. Rev. Applied, 6(2016), No. 5, art. No. 054022. doi: 10.1103/PhysRevApplied.6.054022
    [41]
    C.K. Zhu, I. Ahmed, A. Parsons, et al., Novel bioresorbable phosphate glass fiber textile composites for medical applications, Polym. Compos., 39(2018), No. S1, p. E140. doi: 10.1002/pc.24499
    [42]
    M.Z. Liao, Z. Wei, L.J. Du, et al., Precise control of the interlayer twist angle in large scale MoS2 homostructures, Nat. Commun., 11(2020), No. 1, art. No. 2153. doi: 10.1038/s41467-020-16056-4
    [43]
    L. Wang, X.Z. Li, C.J. Pei, et al., Single- and few-layer 2H-SnS2 and 4H-SnS2 nanosheets for high-performance photodetection, Chin. Chem. Lett., 33(2022), No. 5, p. 2611. doi: 10.1016/j.cclet.2021.09.094
    [44]
    M.S. Moghaddam, A. Bahari, and H.R. Litkohi, Using the synergistic effects of MoS2/rGO and bimetallic hybrids as a high-performance nanoelectrocatalyst for oxygen reduction reaction, Int. J. Hydrog. Energy, 48(2023), No. 85, p. 33139. doi: 10.1016/j.ijhydene.2023.05.070
    [45]
    M. Soleimani Moghaddam, A. Bahari, and H. Rajaei Litkohi, Designing and modeling fuel cells made of mixed transition metal dichalcogenide and carbon-based nanostructure electrodes for renewable energy storage, J. Power Sources, 604(2024), art. No. 234514. doi: 10.1016/j.jpowsour.2024.234514
    [46]
    L.T. Liu, L.G. Kong, Q.Y. Li, et al., Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors, Nat. Electron., 4(2021), No. 5, p. 342. doi: 10.1038/s41928-021-00566-0
    [47]
    F. Wu, H. Tian, Y. Shen, et al., Vertical MoS2 transistors with sub-1-nm gate lengths, Nature, 603(2022), p. 259. doi: 10.1038/s41586-021-04323-3
    [48]
    K.L. Liu, X. Chen, P.L. Gong, et al., Approaching strain limit of two-dimensional MoS2 via chalcogenide substitution, Sci. Bull., 67(2022), No. 1, p. 45. doi: 10.1016/j.scib.2021.07.010
    [49]
    L.N. Liu, J.X. Wu, L.Y. Wu, et al., Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers, Nat. Mater., 17(2018), No. 12, p. 1108. doi: 10.1038/s41563-018-0187-1
    [50]
    J.F. Jiang, Y. Zhang, A.Z. Wang, et al., Construction of high field-effect mobility multilayer MoS2 field-effect transistors with excellent stability through interface engineering, ACS Appl. Electron. Mater., 2(2020), No. 7, p. 2132. doi: 10.1021/acsaelm.0c00347
    [51]
    F. Li, R. Tao, B.L. Cao, L. Yang, and Z.G. Wang, Manipulating the light-matter interaction of PtS/MoS2 p–n junctions for high performance broadband photodetection, Adv. Funct. Mater., 31(2021), No. 36, art. No. 2104367. doi: 10.1002/adfm.202104367
    [52]
    Q. Wang, Q. Zhang, G.Y. Wang, Y.R. Wang, X.Y. Ren, and G.H. Gao, Muscle-inspired anisotropic hydrogel strain sensors, ACS Appl. Mater. Interfaces, 14(2022), No. 1, p. 1921. doi: 10.1021/acsami.1c18758
    [53]
    X.F. Zhang, L. Wei, L. Wang, J. Liu, and J. Xu, Gate length related transfer characteristics of GaN-based high electron mobility transistors, Appl. Phys. Lett., 102(2013), No. 11, art. No. 113501. doi: 10.1063/1.4795609
    [54]
    S.M. Shinde, G. Kalita, and M. Tanemura, Fabrication of poly(methyl methacrylate)-MoS2/graphene heterostructure for memory device application, J. Appl. Phys., 116(2014), No. 21, art. No. 214306. doi: 10.1063/1.4903552
    [55]
    W.Z. Bao, X.H. Cai, D. Kim, K. Sridhara, and M.S. Fuhrer, High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects, Appl. Phys. Lett., 102(2013), No. 4, art. No. 042104. doi: 10.1063/1.4789365
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Share Article

    Article Metrics

    Article Views(335) PDF Downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return