Dejwikom Theprattanakorn, Thanayut Kaewmaraya, and Supree Pinitsoontorn, Boosting thermoelectric efficiency of Ag2Se through cold sintering process with Ag nano-precipitate formation, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2760-2769. https://doi.org/10.1007/s12613-024-2973-x
Cite this article as:
Dejwikom Theprattanakorn, Thanayut Kaewmaraya, and Supree Pinitsoontorn, Boosting thermoelectric efficiency of Ag2Se through cold sintering process with Ag nano-precipitate formation, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2760-2769. https://doi.org/10.1007/s12613-024-2973-x
Research Article

Boosting thermoelectric efficiency of Ag2Se through cold sintering process with Ag nano-precipitate formation

+ Author Affiliations
  • Corresponding author:

    Supree Pinitsoontorn    E-mail: psupree@kku.ac.th

  • Received: 19 April 2024Revised: 10 July 2024Accepted: 12 July 2024Available online: 16 July 2024
  • Silver selenide (Ag2Se) stands out as a promising thermoelectric (TE) material, particularly for applications near room temperatures. This research presents a novel approach for the fabrication of bulk Ag2Se samples at a relatively low temperature (170°C) using the cold sintering process (CSP) with AgNO3 solution as a transient liquid agent. The effect of AgNO3 addition during CSP on the microstructure and TE properties was investigated. The results from phase, composition and microstructure analyses showed that the introduction of AgNO3 solution induced the formation of Ag nano-precipitates within the Ag2Se matrix. Although the nano-precipitates do not affect the phase and crystal structure of orthorhombic β-Ag2Se, they suppressed crystal growth, leading to reduced crystallite sizes. The samples containing Ag nano-precipitates also exhibited high porosity and low bulk density. Consequently, these effects contributed to significantly enhanced electrical conductivity and a slight decrease in the Seebeck coefficient when small Ag concentrations were incorporated. This resulted in an improved average power factor from ~1540 µW·m−1·K−2 for pure Ag2Se to ~1670 µW·m−1·K−2 for Ag2Se with additional Ag precipitates. However, excessive Ag addition had a detrimental effect on the power factor. Furthermore, thermal conductivity was effectively suppressed in Ag2Se fabricated using AgNO3-assisted CSP, attributed to enhanced phonon scattering at crystal interfaces, pores, and Ag nano-precipitates. The highest figure-of-merit (zT) of 0.92 at 300 K was achieved for the Ag2Se with 0.5wt% Ag during CSP fabrication, equivalent to >20% improvement compared to the controlled Ag2Se without extra Ag solution. Thus, the process outlined in this study presents an effective strategy to tailor the microstructure of bulk Ag2Se and enhance its TE performance at room temperature.
  • loading
  • Supplementary Information-s12613-024-2973-x.docx
  • [1]
    Y. Lyu, A.R.M. Siddique, S.A. Gadsden, and S. Mahmud, Experimental investigation of thermoelectric cooling for a new battery pack design in a copper holder, Results Eng., 10(2021), art. No. 100214. doi: 10.1016/j.rineng.2021.100214
    [2]
    D.L. Zhao and G. Tan, A review of thermoelectric cooling: Materials, modeling and applications, Appl. Therm. Eng., 66(2014), No. 1-2, p. 15.
    [3]
    M. Cellura, L.Q. Luu, F. Guarino, and S. Longo, A review on life cycle environmental impacts of emerging solar cells, Sci. Total Environ., 908(2024), art. No. 168019. doi: 10.1016/j.scitotenv.2023.168019
    [4]
    K.F. Yu, Y.J. Zhou, Y.L. Liu, et al., Near-room-temperature thermoelectric materials and their application prospects in geothermal power generation, Geomech. Geophys. Geo-Energy Geo-Resour., 6(2019), No. 1, art. No. 12.
    [5]
    Z.J. Han, J.W. Li, F. Jiang, et al., Room-temperature thermoelectric materials: Challenges and a new paradigm, J. Materiomics, 8(2022), No. 2, p. 427. doi: 10.1016/j.jmat.2021.07.004
    [6]
    G.J. Snyder and E.S. Toberer, Complex thermoelectric materials, Nat. Mater., 7(2008), p. 105. doi: 10.1038/nmat2090
    [7]
    A. Bugalia, V. Gupta, and N. Thakur, Strategies to enhance the performance of thermoelectric materials: A review, J. Renewable Sustainable Energy, 15(2023), No. 3, art. No. 032704. doi: 10.1063/5.0147000
    [8]
    K. Kurosaki, Y. Takagiwa and X. Shi, Thermoelectric Materials : Principles and Concepts for Enhanced Properties, De Gruyter, Berlin, 2020.
    [9]
    Z.L. Bu, X.Y. Zhang, Y.X. Hu, et al., A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery, Nat. Commun., 13(2022), No. 1, art. No. 237. doi: 10.1038/s41467-021-27916-y
    [10]
    A. Firth, B. Zhang, and A.D. Yang, Quantification of global waste heat and its environmental effects, Appl. Energy, 235(2019), p. 1314. doi: 10.1016/j.apenergy.2018.10.102
    [11]
    C. Forman, I.K. Muritala, R. Pardemann, and B. Meyer, Estimating the global waste heat potential, Renewable Sustainable Energy Rev., 57(2016), p. 1568. doi: 10.1016/j.rser.2015.12.192
    [12]
    T.Y. Cao, X.L. Shi, M. Li, et al., Advances in bismuth-telluride-based thermoelectric devices: Progress and challenges, eScience, 3(2023), No. 3, art. No. 100122. doi: 10.1016/j.esci.2023.100122
    [13]
    M. D’Angelo, C. Galassi, and N. Lecis, Thermoelectric materials and applications: A review, Energies, 16(2023), No. 17, art. No. 6409. doi: 10.3390/en16176409
    [14]
    M.W. Gaultois, T.D. Sparks, C.K.H. Borg, R. Seshadri, W.D. Bonificio, and D.R. Clarke, Data-driven review of thermoelectric materials: Performance and resource considerations, Chem. Mater., 25(2013), No. 15, p. 2911. doi: 10.1021/cm400893e
    [15]
    D. Beretta, N. Neophytou, J.M. Hodges, et al., Thermoelectrics: From history, a window to the future, Mater. Sci. Eng. R: Rep., 138(2019), art. No. 100501. doi: 10.1016/j.mser.2018.09.001
    [16]
    S.Y. Tee, D. Ponsford, C.L. Lay, et al., Thermoelectric silver-based chalcogenides, Adv. Sci., 9(2022), No. 36, art. No. 2204624. doi: 10.1002/advs.202204624
    [17]
    D.W. Yang, X.L. Su, F.C. Meng, et al., Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se via a dissociative adsorption reaction, J. Mater. Chem. A, 5(2017), No. 44, p. 23243. doi: 10.1039/C7TA08726H
    [18]
    N. Kongsip, T. Kawemaraya, T. Kamwanna, and S. Pinitsoontorn, Enhancing thermoelectric properties of silver selenide through cold sintering process using aqua regia as a liquid medium, Next Materials, 3(2024), art. No. 100136. doi: 10.1016/j.nxmate.2024.100136
    [19]
    D. Palaporn, S. Pinitsoontorn, K. Kurosaki, and G.J. Snyder, Porous Ag2Se fabricated by a modified cold sintering process with the average zT around unity near room temperature, Adv. Mater. Technol., 9(2024), No. 1, art. No. 2301242. doi: 10.1002/admt.202301242
    [20]
    J. Park, M. Dylla, Y. Xia, M. Wood, G.J. Snyder, and A. Jain, When band convergence is not beneficial for thermoelectrics, Nat. Commun., 12(2021), art. No. 3425. doi: 10.1038/s41467-021-23839-w
    [21]
    P. Jood and M. Ohta, Temperature-dependent structural variation and Cu substitution in thermoelectric silver selenide, ACS Appl. Energy Mater., 3(2020), No. 3, p. 2160. doi: 10.1021/acsaem.9b02231
    [22]
    J. Chen, Q. Sun, D.Y. Bao, et al., Hierarchical structures advance thermoelectric properties of porous n-type β-Ag2Se, ACS Appl. Mater. Interfaces, 12(2020), No. 46, p. 51523. doi: 10.1021/acsami.0c15341
    [23]
    H.Y. Wang, X.F. Liu, B. Zhang, et al., General surfactant-free synthesis of binary silver chalcogenides with tuneable thermoelectric properties, Chem. Eng. J., 393(2020), art. No. 124763. doi: 10.1016/j.cej.2020.124763
    [24]
    F.F. Aliev, M.B. Jafarov, and V.I. Eminova, Thermoelectric figure of merit of Ag2Se with Ag and Se excess, Semiconductors, 43(2009), No. 8, p. 977. doi: 10.1134/S1063782609080028
    [25]
    H.Z. Duan, Y.L. Li, K.P. Zhao, P.F. Qiu, X. Shi, and L.D. Chen, Ultra-fast synthesis for Ag2Se and CuAgSe thermoelectric materials, JOM, 68(2016), No. 10, p. 2659. doi: 10.1007/s11837-016-1980-4
    [26]
    S.Y. Tee, X.Y. Tan, X. Wang, et al., Aqueous synthesis, doping, and processing of n-type Ag2Se for high thermoelectric performance at near-room-temperature, Inorg. Chem., 61(2022), No. 17, p. 6451. doi: 10.1021/acs.inorgchem.2c00060
    [27]
    D. Li, J.H. Zhang, J.M. Li, J. Zhang, and X.Y. Qin, High thermoelectric performance for an Ag2Se-based material prepared by a wet chemical method, Mater. Chem. Front., 4(2020), No. 3, p. 875. doi: 10.1039/C9QM00487D
    [28]
    B.Q. Feng, Y.R. Cheng, C.Y. Liu, et al., Ag interstitial inhibition and phonon scattering at the ZnSe nano-precipitates to enhance the thermoelectric performance of Ag2Se, ACS Appl. Energy Mater., 6(2023), No. 5, p. 2804. doi: 10.1021/acsaem.2c03704
    [29]
    H. Wu, X.L. Shi, J.G. Duan, Q.F. Liu, and Z.G. Chen, Advances in Ag2Se-based thermoelectrics from materials to applications, Energy Environ. Sci., 16(2023), No. 5, p. 1870. doi: 10.1039/D3EE00378G
    [30]
    T. Kleinhanns, F. Milillo, M. Calcabrini, et al., A route to high thermoelectric performance: Solution-based control of microstructure and composition in Ag2Se, Adv. Energy Mater., 14(2024), No. 22, art. No. 2400408. doi: 10.1002/aenm.202400408
    [31]
    R. Santhosh, S. Harish, R. Abinaya, et al., Enhanced thermoelectric performance of hot-pressed n-type Ag2Se nanostructures by controlling the intrinsic lattice defects, CrystEngComm, 25(2023), No. 22, p. 3317. doi: 10.1039/D3CE00066D
    [32]
    T. Day, F. Drymiotis, T.S. Zhang, et al., Evaluating the potential for high thermoelectric efficiency of silver selenide, J. Mater. Chem. C, 1(2013), No. 45, p. 7568. doi: 10.1039/c3tc31810a
    [33]
    J. Guo, H. Guo, A.L. Baker, et al., Cold sintering: A paradigm shift for processing and integration of ceramics, Angew. Chem. Int. Ed., 55(2016), No. 38, p. 11457. doi: 10.1002/anie.201605443
    [34]
    A. Ndayishimiye, M.Y. Sengul, T. Sada, et al., Roadmap for densification in cold sintering: Chemical pathways, Open Ceram., 2(2020), art. No. 100019. doi: 10.1016/j.oceram.2020.100019
    [35]
    B. Zhu, X.L. Su, S.C. Shu, et al., Cold-sintered Bi2Te3-based materials for engineering nanograined thermoelectrics, ACS Appl. Energy Mater., 5(2022), No. 2, p. 2002. doi: 10.1021/acsaem.1c03540
    [36]
    X. Lu, W. Lu, J. Gao, et al., Processing high-performance thermoelectric materials in a green way: A proof of concept in cold sintered PbTe0.94Se0.06, ACS Appl. Mater. Interfaces, 14(2022), No. 33, p. 37937. doi: 10.1021/acsami.2c09065
    [37]
    W. Lu, S. Wu, Q. Ding, et al., Cold sintering mediated engineering of polycrystalline SnSe with high thermoelectric efficiency, ACS Appl. Mater. Interfaces, 16(2024), No. 4, p. 4671. doi: 10.1021/acsami.3c15970
    [38]
    N. Chen, M.R. Scimeca, S.J. Paul, et al., High-performance thermoelectric silver selenide thin films cation exchanged from a copper selenide template, Nanoscale Adv., 2(2020), No. 1, p. 368. doi: 10.1039/C9NA00605B
    [39]
    M.C. Mehra and A.O. Gubeli, The complexing characteristics of insoluble selenides. 1. Silver selenide, Can. J. Chem., 48(1970), No. 22, p. 3491. doi: 10.1139/v70-584
    [40]
    H.Y. Tang, J.R. Zheng, J.P. Li, Q. Xu and H.C. Pan, Multicomponent heterojunction of AuAg2SePb3 (PO42 for plasmonic enhanced photoelectrochemical performance, Optoelectron. Adv. Mater. Rapid Commun., 11(2017), No. 11–12, p. 671.
    [41]
    D. Palaporn, K. Kurosaki, and S. Pinitsoontorn, Effect of sintering temperature on the thermoelectric properties of Ag2Se fabricated by spark plasma sintering with high compression, Adv. Energy Sustainability Res., 4(2023), No. 10, art. No. 2300082. doi: 10.1002/aesr.202300082
    [42]
    S. Chand and P. Sharma, Synthesis and characterization of Ag-chalcogenide nanoparticles for possible applications in photovoltaics, Mater. Sci.-Pol., 36(2018), No. 3, p. 375. doi: 10.2478/msp-2018-0064
    [43]
    S. Huang, T.R. Wei, H. Chen, et al., Thermoelectric Ag2Se: Imperfection, homogeneity, and reproducibility, ACS Appl. Mater. Interfaces, 13(2021), No. 50, p. 60192.
    [44]
    M. Kockert, D. Kojda, R. Mitdank, et al., Nanometrology: Absolute Seebeck coefficient of individual silver nanowires, Sci. Rep., 9(2019), art. No. 20265. doi: 10.1038/s41598-019-56602-9
    [45]
    Y.Z. Lei, W. Liu, X.Y. Zhou, et al., The electronic-thermal transport properties and the exploration of magneto-thermoelectric properties and the Nernst thermopower of Ag2(1+ x)Se, J. Solid State Chem., 288(2020), art. No. 121453. doi: 10.1016/j.jssc.2020.121453
    [46]
    X. Liang, C.G. Wang, and D. Jin, Influence of nonstoichiometry point defects on electronic thermal conductivity, Appl. Phys. Lett., 117(2020), No. 21, art. No. 213901. doi: 10.1063/5.0031353
    [47]
    Q. Gao, W. Wang, Y. Lu, et al., High power factor Ag/Ag2Se composite films for flexible thermoelectric generators, ACS Appl. Mater. Interfaces, 13(2021), No. 12, p. 14327. doi: 10.1021/acsami.1c02194
    [48]
    S.Y. Tee, D. Ponsford, X.Y. Tan, et al., Compositionally tuned hybridization of n-type Ag0:  Ag2Se under ambient conditions towards excellent thermoelectric properties at room temperature, Mater. Chem. Front., 7(2023), No. 12, p. 2411. doi: 10.1039/D3QM00123G
    [49]
    M. Jin, J.S. Liang, P.F. Qiu, et al., Investigation on low-temperature thermoelectric properties of Ag2Se polycrystal fabricated by using zone-melting method, J. Phys. Chem. Lett., 12(2021), No. 34, p. 8246. doi: 10.1021/acs.jpclett.1c02139
    [50]
    Y.Z. Pei, A.D. LaLonde, H. Wang, and G.J. Snyder, Low effective mass leading to high thermoelectric performance, Energy Environ. Sci., 5(2012), No. 7, p. 7963. doi: 10.1039/c2ee21536e
    [51]
    H.X. Wang, H.Y. Hu, N. Man, et al., Band flattening and phonon-defect scattering in cubic SnSe–AgSbTe2 alloy for thermoelectric enhancement, Mater. Today Phys., 16(2021), art. No. 100298. doi: 10.1016/j.mtphys.2020.100298
    [52]
    R. Dalven and R. Gill, Energy gap in β-Ag2Se, Phys. Rev., 159(1967), No.3, p. 645. doi: 10.1103/PhysRev.159.645
    [53]
    H.F. Wang, W.G. Chu, D.W. Wang, et al., Low-temperature thermoelectric properties of β-Ag2Se synthesized by hydrothermal reaction, J. Electron. Mater., 40(2011), No. 5, p. 624. doi: 10.1007/s11664-010-1484-x
    [54]
    K.P. Zhao, P.F. Qiu, X. Shi, and L.D. Chen, Recent advances in liquid-like thermoelectric materials, Adv. Funct. Mater., 30(2020), No. 8, art. No. 1903867. doi: 10.1002/adfm.201903867
    [55]
    T. Tarachand, R. Venkatesh, and G.S. Okram, Enhanced thermoelectric performance of Ag2S nanoparticles by Ag-nanoinclusions, AIP Conf. Proc., 2100(2019), No. 1, art. No. 020126.
    [56]
    H.J. Wu, J. Carrete, Z.Y. Zhang, et al., Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics, NPG Asia Mater., 6(2014), No. 6, art. No. e108. doi: 10.1038/am.2014.39
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Share Article

    Article Metrics

    Article Views(384) PDF Downloads(28) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return