Lou Zhang, Shuo Li, Fu Tang, Jingkai Zhang, Yuetong Kang, Hean Zhang, and Lidong Li, Preparation of silver nanoparticles through the reduction of straw-extracted lignin and its antibacterial hydrogel, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2978-5
Cite this article as:
Lou Zhang, Shuo Li, Fu Tang, Jingkai Zhang, Yuetong Kang, Hean Zhang, and Lidong Li, Preparation of silver nanoparticles through the reduction of straw-extracted lignin and its antibacterial hydrogel, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2978-5
Research Article

Preparation of silver nanoparticles through the reduction of straw-extracted lignin and its antibacterial hydrogel

+ Author Affiliations
  • Corresponding author:

    Fu Tang    E-mail: tangfu@ustb.edu.cn

  • Received: 25 March 2024Revised: 19 July 2024Accepted: 24 July 2024Available online: 26 July 2024
  • Silver nanoparticles (Ag NPs) have attracted attention in the field of biomaterials due to their excellent antibacterial property. However, the reducing and stabilizing agents used for the chemical reduction of Ag NPs are usually toxic and may cause water pollution. In this work, Ag NPs (31.2 nm in diameter) were prepared using the extract of straw, an agricultural waste, as the reducing and stabilizing agent. Experimental analysis revealed that the straw extract contained lignin, the structure of which possesses phenolic hydroxyl and methoxy groups that facilitate the reduction of silver salts into Ag NPs. The surfaces of Ag NPs were negatively charged due to the encapsulation of a thin layer of lignin molecules that prevented their aggregation. After the prepared Ag NPs were added to the precursor solution of acrylamide, free radical polymerization was triggered without the need for extra heating or light irradiation, resulting in the rapid formation of an Ag NP–polyacrylamide composite hydrogel. The inhibition zone test proved that the composite hydrogel possessed excellent antibacterial ability due to the presence of Ag NPs. The prepared hydrogel may have potential applications in the fabrication of biomedical materials, such as antibacterial dressings.
  • loading
  • Supplementary Information-10.1007s12613-024-2978-5.docx
  • [1]
    Y.S. Zhang and A. Khademhosseini, Advances in engineering hydrogels, Science, 356(2017), No. 6337, art. No. eaaf3627. doi: 10.1126/science.aaf3627
    [2]
    X.K. Lin, X.D. Huang, C.G. Zeng, et al., Poly(vinyl alcohol) hydrogels integrated with cuprous oxide–tannic acid submicroparticles for enhanced mechanical properties and synergetic antibiofouling, J. Colloid Interface Sci., 535(2019), p. 491. doi: 10.1016/j.jcis.2018.10.017
    [3]
    Y.N. Wang, C.F. Dong, D.W. Zhang, P.P. Ren, L. Li, and X.G. Li, Preparation and characterization of a chitosan-based low-pH-sensitive intelligent corrosion inhibitor, Int. J. Miner. Metall. Mater., 22(2015), No. 9, p. 998. doi: 10.1007/s12613-015-1161-4
    [4]
    Y.W. Zheng, Y.L. Yan, L.M. Lin, et al., Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection, Acta Biomater., 142(2022), p. 113. doi: 10.1016/j.actbio.2022.02.019
    [5]
    S. Sadeghi, J. Nourmohammadi, A. Ghaee, and N. Soleimani, Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing, Int. J. Biol. Macromol., 147(2020), p. 1239. doi: 10.1016/j.ijbiomac.2019.09.251
    [6]
    J.M. Qian, L.J. Ji, W.J. Xu, et al., Copper-hydrazide coordinated multifunctional hyaluronan hydrogels for infected wound healing, ACS Appl. Mater. Interfaces, 14(2022), No. 14, p. 16018. doi: 10.1021/acsami.2c01254
    [7]
    Y. Li, R.Z. Fu, Z.G. Duan, C.H. Zhu, and D.D. Fan, Injectable hydrogel based on defect-rich multi-nanozymes for diabetic wound healing via an oxygen self-supplying cascade reaction, Small, 18(2022), No. 18, art. No. 2200165. doi: 10.1002/smll.202200165
    [8]
    Z. Abdollahi, E.N. Zare, F. Salimi, I. Goudarzi, F.R. Tay, and P. Makvandi, Bioactive carboxymethyl starch-based hydrogels decorated with CuO nanoparticles: Antioxidant and antimicrobial properties and accelerated wound healing in vivo, Int. J. Mol. Sci., 22(2021), No. 5, art. No. 2531. doi: 10.3390/ijms22052531
    [9]
    K.P. Liu, F.J. Zhang, Y. Wei, et al., Dressing blood-contacting materials by a stable hydrogel coating with embedded antimicrobial peptides for robust antibacterial and antithrombus properties, ACS Appl. Mater. Interfaces, 13(2021), No. 33, p. 38947. doi: 10.1021/acsami.1c05167
    [10]
    L. Zamora-Mendoza, S.N. Vispo, L. De Lima, J.R. Mora, A. Machado, and F. Alexis, Hydrogel for the controlled delivery of bioactive components from extracts of Eupatorium glutinosum lam. leaves, Molecules, 28(2023), No. 4, art. No. 1591. doi: 10.3390/molecules28041591
    [11]
    M. Suneetha, K.M. Rao, and S.S. Han, Cell/tissue adhesive, self-healable, biocompatible, hemostasis, and antibacterial hydrogel dressings for wound healing applications, Adv. Mater. Interfaces, 9(2022), No. 13, art. No. 2102369. doi: 10.1002/admi.202102369
    [12]
    M. Darroudi, M.B. Ahmad, M. Hakimi, et al., Preparation, characterization, and antibacterial activity of γ-irradiated silver nanoparticles in aqueous gelatin, Int. J. Miner. Metall. Mater., 20(2013), No. 4, p. 403. doi: 10.1007/s12613-013-0743-2
    [13]
    J.W. Song, C.Q. Yuan, T.F. Jiao, et al., Multifunctional antimicrobial biometallohydrogels based on amino acid coordinated self-assembly, Small, 16(2020), No. 8, art. No. 1907309. doi: 10.1002/smll.201907309
    [14]
    J.R. Xiong, Y.F. Cao, H.T. Zhao, et al., Cooperative antibacterial enzyme-Ag-polymer nanocomposites, ACS Nano, 16(2022), No. 11, p. 19013. doi: 10.1021/acsnano.2c07930
    [15]
    Y.A. Qing, L. Cheng, R.Y. Li, et al., Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies, Int. J. Nanomed., 13(2018), p. 3311. doi: 10.2147/IJN.S165125
    [16]
    S. Agnihotri, S. Mukherji, and S. Mukherji, Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver, Nanoscale, 5(2013), No. 16, p. 7328. doi: 10.1039/c3nr00024a
    [17]
    D.S. Song, J.H. Song, and S.H. Ahn, Three-dimensional printing of Ag nanoparticle meshes for antibacterial activity, ACS Appl. Nano Mater., 6(2023), No. 12, p. 10845. doi: 10.1021/acsanm.3c02226
    [18]
    I.X. Yin, J. Zhang, I.S. Zhao, M.L. Mei, Q. Li, and C.H. Chu, The antibacterial mechanism of silver nanoparticles and its application in dentistry, Int. J. Nanomed., 15(2020), p. 2555. doi: 10.2147/IJN.S246764
    [19]
    J.Y. Chen, L. Yang, J.C. Chen, et al., Composite of silver nanoparticles and photosensitizer leads to mutual enhancement of antimicrobial efficacy and promotes wound healing, Chem. Eng. J., 374(2019), p. 1373. doi: 10.1016/j.cej.2019.05.184
    [20]
    A.S. Jain, P.S. Pawar, A. Sarkar, V. Junnuthula, and S. Dyawanapelly, Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications, Int. J. Mol. Sci., 22(2021), No. 21, art. No. 11993. doi: 10.3390/ijms222111993
    [21]
    L. Jaiswal, S. Shankar, J.W. Rhim, and D.H. Hahm, Lignin-mediated green synthesis of AgNPs in carrageenan matrix for wound dressing applications, Int. J. Biol. Macromol., 159(2020), p. 859. doi: 10.1016/j.ijbiomac.2020.05.145
    [22]
    O. Pryshchepa, P. Pomastowski, and B. Buszewski, Silver nanoparticles: Synthesis, investigation techniques, and properties, Adv. Colloid Interface Sci., 284(2020), art. No. 102246. doi: 10.1016/j.cis.2020.102246
    [23]
    T. Bruna, F. Maldonado-Bravo, P. Jara, and N. Caro, Silver nanoparticles and their antibacterial applications, Int. J. Mol. Sci., 22(2021), No. 13, art. No. 7202. doi: 10.3390/ijms22137202
    [24]
    R. Shanmuganathan, I. Karuppusamy, M. Saravanan, et al., Synthesis of silver nanoparticles and their biomedical applications - A comprehensive review, Curr. Pharm. Des., 25(2019), No. 24, p. 2650. doi: 10.2174/1381612825666190708185506
    [25]
    Y.N. Liu, F. Li, Z.R. Guo, et al., Silver nanoparticle-embedded hydrogel as a photothermal platform for combating bacterial infections, Chem. Eng. J., 382(2020), art. No. 122990. doi: 10.1016/j.cej.2019.122990
    [26]
    S. Dawadi, S. Katuwal, A. Gupta, et al., Current research on silver nanoparticles: Synthesis, characterization, and applications, J. Nanomater., 2021(2021), art. No. 6687290.
    [27]
    N. Kang, S. Zhang, F. Tang, J. Wang, and L.D. Li, Silver-Hydrogel/PDMS film with high mechanical strength for anti-interference strain sensor, Colloids Surf. A, 654(2022), art. No. 130071. doi: 10.1016/j.colsurfa.2022.130071
    [28]
    W.J. Zhou, Q.H. Jing, J.X. Li, Y.Z. Chen, G.D. Hao, and L.N. Wang, Organic photocatalysts for solar water splitting: Molecular- and aggregate-level modifications, Acta Phys. Chim. Sin., 39(2023), art. No. 2211010.
    [29]
    F. Tang, C. Wang, X.Y. Wang, and L.D. Li, Facile synthesis of biocompatible fluorescent nanoparticles for cellular imaging and targeted detection of cancer cells, ACS Appl. Mater. Interfaces, 7(2015), No. 45, p. 25077. doi: 10.1021/acsami.5b08907
    [30]
    J. Wang, F. Tang, Y. Wang, Q.P. Lu, S.Q. Liu, and L.D. Li, Self-healing and highly stretchable gelatin hydrogel for self-powered strain sensor, ACS Appl. Mater. Interfaces, 12(2020), No. 1, p. 1558. doi: 10.1021/acsami.9b18646
    [31]
    E. Cook, G. Labiento, and B.P.S. Chauhan, Fundamental methods for the phase transfer of nanoparticles, Molecules, 26(2021), No. 20, art. No. 6170. doi: 10.3390/molecules26206170
    [32]
    Q. Deng, Z.H. Zhang, Y.Y. Liu, et al., Green assembly of silver nanoparticles on PET by using silymarin as a natural reductant, Surf. Interfaces, 45(2024), art. No. 103854. doi: 10.1016/j.surfin.2024.103854
    [33]
    W.G. Glasser, About making lignin great again-some lessons from the past, Front. Chem., 7(2019), art. No. 565. doi: 10.3389/fchem.2019.00565
    [34]
    A. do Espirito Santo Pereira, J. Luiz de Oliveira, S. Maira Savassa, C. Barbara Rogério, G. Araujo de Medeiros, and L.F. Fraceto, Lignin nanoparticles: New insights for a sustainable agriculture, J. Cleaner Prod., 345(2022), art. No. 131145. doi: 10.1016/j.jclepro.2022.131145
    [35]
    B. Abraham, V.L. Syamnath, K.B. Arun, et al., Lignin-based nanomaterials for food and pharmaceutical applications: Recent trends and future outlook, Sci. Total Environ., 881(2023), art. No. 163316. doi: 10.1016/j.scitotenv.2023.163316
    [36]
    A.M. Afanasenko, X. Wu, A. De Santi, et al., Clean synthetic strategies to biologically active molecules from lignin: A green path to drug discovery, Angew. Chem. Int. Ed, 63(2024), No. 4, art. No. e202308131. doi: 10.1002/anie.202308131
    [37]
    X. He, H. Kim, T.G. Dong, I. Gates, and Q.Y. Lu, Green synthesis of Ag/lignin nanoparticle-loaded cellulose aerogel for catalytic degradation and antimicrobial applications, Cellulose, 29(2022), No. 17, p. 9341. doi: 10.1007/s10570-022-04848-4
    [38]
    A.F. Yi, M.N. Wu, P.W. Liu, Y.L. Feng, and H.R. Li, Reductive leaching of low-grade manganese ore with pre-processed cornstalk, Int. J. Miner. Metall. Mater., 22(2015), No. 12, p. 1245. doi: 10.1007/s12613-015-1191-y
    [39]
    C.G. Boeriu, D. Bravo, R.J.A. Gosselink, and J.E.G. van Dam, Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy, Ind. Crops Prod., 20(2004), No. 2, p. 205. doi: 10.1016/j.indcrop.2004.04.022
    [40]
    R.M. dos Santos, W.P. Flauzino Neto, H.A. Silvério, D.F. Martins, N.O. Dantas, and D. Pasquini, Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste, Ind. Crops Prod., 50(2013), p. 707. doi: 10.1016/j.indcrop.2013.08.049
    [41]
    S.B. Parit, V.C. Karade, R.B. Patil, et al., Bioinspired synthesis of multifunctional silver nanoparticles for enhanced antimicrobial and catalytic applications with tailored SPR properties, Mater. Today Chem., 17(2020), art. No. 100285. doi: 10.1016/j.mtchem.2020.100285
    [42]
    N. Sultana, P.K. Raul, D. Goswami, et al., Bio-nanoparticle assembly: A potent on-site biolarvicidal agent against mosquito vectors, RSC Adv., 10(2020), No. 16, p. 9356. doi: 10.1039/C9RA09972G
    [43]
    W.Z. Jiang, Y.C. Zhang, D.J. Yang, X.Q. Qiu, and Z.X. Li, Ultrasonic-assisted synthesis of lignin-based ultrasmall silver nanoparticles for photothermal-mediated sterilization, Int. J. Biol. Macromol., 262(2024), art. No. 129827. doi: 10.1016/j.ijbiomac.2024.129827
    [44]
    K.J. Haunreiter, A.B. Dichiara, and R. Gustafson, Nanocellulose by ammonium persulfate oxidation: An alternative to TEMPO-mediated oxidation, ACS Sustainable Chem. Eng., 10(2022), No. 12, p. 3882. doi: 10.1021/acssuschemeng.1c07814
    [45]
    H.M. Zhang, K. Xue, X.H. Xu, et al., Green and low-cost alkali-polyphenol synergetic self-catalysis system access to fast gelation of self-healable and self-adhesive conductive hydrogels for self-powered triboelectric nanogenerators, Small, 20(2024), No. 10, art. No. 2305502. doi: 10.1002/smll.202305502
    [46]
    D.Q. Cai, X.H. Kong, X.J. Zhang, et al., Alkali-activated potassium persulfate treatment of sugarcane filter cake for the rapid production of fulvic-like-acid fertilizer, ACS Sustainable Chem. Eng., 11(2023), No. 37, p. 13678. doi: 10.1021/acssuschemeng.3c03511
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Share Article

    Article Metrics

    Article Views(307) PDF Downloads(24) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return