Fei Weng, Guijun Bi, Youxiang Chew, Shang Sui, Chaolin Tan, Zhenglin Du, Jinlong Su,  and Fern Lan Ng, Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-3003-8
Cite this article as:
Fei Weng, Guijun Bi, Youxiang Chew, Shang Sui, Chaolin Tan, Zhenglin Du, Jinlong Su,  and Fern Lan Ng, Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-3003-8
Research Article

Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire

+ Author Affiliations
  • Corresponding authors:

    Guijun Bi    E-mail: gj.bi@giim.ac.cn

    Youxiang Chew    E-mail: chewyx@simtech.a-star.edu.sg

  • Received: 25 June 2024Revised: 15 August 2024Accepted: 9 September 2024Available online: 10 September 2024
  • The feasibility of manufacturing Ti–6Al–4V samples through a combination of laser-aided additive manufacturing with powder (LAAMp) and wire (LAAMw) was explored. A process study was first conducted to successfully circumvent defects in Ti–6Al–4V deposits for LAAMp and LAAMw, respectively. With the optimized process parameters, robust interfaces were achieved between powder/wire deposits and the forged substrate, as well as between powder and wire deposits. Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti–6Al–4V, wherein the powder deposit was dominated by a finer α′ microstructure and the wire deposit was characterized by lamellar α phases. The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed. The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications (AMS 6932) even without post heat treatment. No fracture occurred within the interfacial area, further suggesting the robust interface. The findings of this study highlighted the feasibility of combining LAAMp and LAAMw in the direct manufacturing of Ti–6Al–4V parts in accordance with the required dimensional resolution and deposition rate, together with sound strength and ductility balance in the as-built condition.
  • loading
  • [1]
    G. Lütjering and J.C. Williams, Titanium, Springer, Berlin, 2007.
    [2]
    C.L. Tan, F. Weng, S. Sui, Y. Chew, and G.J. Bi, Progress and perspectives in laser additive manufacturing of key aeroengine materials, Int. J. Mach. Tools Manuf., 170(2021), art. No. 103804. doi: 10.1016/j.ijmachtools.2021.103804
    [3]
    S.H. Pan, G.C. Yao, Y.N. Cui, et al., Additive manufacturing of tungsten, tungsten-based alloys, and tungsten matrix composites, Tungsten, 5(2023), No. 1, p. 1. doi: 10.1007/s42864-022-00153-6
    [4]
    H.J. Zong, N. Kang, Z.H. Qin, and M. El Mansori, A review on the multi-scaled structures and mechanical/thermal properties of tool steels fabricated by laser powder bed fusion additive manufacturing, Int. J. Miner. Metall. Mater., 31(2024), No. 5, p. 1048. doi: 10.1007/s12613-023-2731-5
    [5]
    X.M. Cai, Y. Hou, W. Zhang, et al., Mechanical behavior and response mechanism of porous metal structures manufactured by laser powder bed fusion under compressive loading, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 737. doi: 10.1007/s12613-024-2865-0
    [6]
    D.C. Kong, C.F. Dong, X.Q. Ni, et al., Microstructure and mechanical properties of nickel-based superalloy fabricated by laser powder-bed fusion using recycled powders, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 266. doi: 10.1007/s12613-020-2147-4
    [7]
    S.Y. Liu and Y.C. Shin, Additive manufacturing of Ti6Al4V alloy: A review, Mater. Des., 164(2019), art. No. 107552. doi: 10.1016/j.matdes.2018.107552
    [8]
    T.L. Zhang and C.T. Liu, Design of titanium alloys by additive manufacturing: A critical review, Adv. Powder Mater., 1(2022), No. 1, art. No. 100014. doi: 10.1016/j.apmate.2021.11.001
    [9]
    Y.W. Luo, M.Y. Wang, J.G. Tu, Y. Jiang, and S.Q. Jiao, Reduction of residual stress in porous Ti6Al4V by in situ double scanning during laser additive manufacturing, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1844. doi: 10.1007/s12613-020-2212-z
    [10]
    L. Lan, R.Y. Xin, X.Y. Jin, S. Gao, and B. He, Influence of multiple laser shock peening treatments on the microstructure and mechanical properties of Ti–6Al–4V alloy fabricated by electron beam melting, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1780. doi: 10.1007/s12613-021-2322-2
    [11]
    Singapore Institute of Manufacturing Technology (SIMTech), Joint Collaboration Aims to Enable Mass Industry Adoption of LAAM Technology, SIMTech [2022-10-23]. https://www.a-star.edu.sg/simtech/news-events/SIMTech-Manufacturing-Matters/MM/research-spotlight/joint-collaboration-aims-to-enable-mass-industry-adoption-of-laam-technology
    [12]
    Singapore Institute of Manufacturing Technology (SIMTech), Laser Aided Additive Manufacturing (LAAM ), SIMTech [2022-10-23]. https://www.a-star.edu.sg/Collaborate/programmes-for-smes/tech-access/additive-manufacturing/laser-aided-additive-manufacturing-(laam
    [13]
    Singapore Institute of Manufacturing Technology (SIMTech), Hybrid Laser Aided Additive Manufacturing Technology Platform, SIMTech [2022-10-23]. https://www.a-star.edu.sg/simtech/news-events/SIMTech-Manufacturing-Matters/MM/research-spotlight/hybrid-laser-aided-additive-manufacturing-technology-platform
    [14]
    F. Weng, Y.F. Liu, Y. Chew, L.L. Wang, B.Y. Lee, and G.J. Bi, Repair feasibility of SS416 stainless steel via laser aided additive manufacturing with SS410/Inconel625 powders, IOP Conf. Ser. Mater. Sci. Eng., 744(2020), No. 1, art. No. 012031. doi: 10.1088/1757-899X/744/1/012031
    [15]
    Z.Q. Liu, R.X. Ma, G.J. Xu, W. Wang, and J. Liu, Laser additive manufacturing of bimetallic structure from Ti–6Al–4V to Ti–48Al–2Cr–2Nb via vanadium interlayer, Mater. Lett., 263(2020), art. No. 127210. doi: 10.1016/j.matlet.2019.127210
    [16]
    H. Paydas, A. Mertens, R. Carrus, J. Lecomte-Beckers, and J.T. Tchuindjang, Laser cladding as repair technology for Ti–6Al–4V alloy: Influence of building strategy on microstructure and hardness, Mater. Des., 85(2015), p. 497. doi: 10.1016/j.matdes.2015.07.035
    [17]
    X.Z. Shi, S.Y. Ma, C.M. Liu, et al., Selective laser melting-wire arc additive manufacturing hybrid fabrication of Ti–6Al–4V alloy: Microstructure and mechanical properties, Mater. Sci. Eng. A, 684(2017), p. 196. doi: 10.1016/j.msea.2016.12.065
    [18]
    Q. Liu, Y.D. Wang, H. Zheng, et al., Microstructure and mechanical properties of LMD–SLM hybrid forming Ti6Al4V alloy, Mater. Sci. Eng. A, 660(2016), p. 24. doi: 10.1016/j.msea.2016.02.069
    [19]
    L. Yan, Y.T. Chen, and F. Liou, Additive manufacturing of functionally graded metallic materials using laser metal deposition, Addit. Manuf., 31(2020), art. No. 100901.
    [20]
    A. Reichardt, A.A. Shapiro, R. Otis, et al., Advances in additive manufacturing of metal-based functionally graded materials, Int. Mater. Rev., 66(2021), No. 1, p. 1. doi: 10.1080/09506608.2019.1709354
    [21]
    M. Rauch, J.Y. Hascoët, and M. Mallaiah, Repairing Ti–6Al–4V aeronautical components with DED additive manufacturing, MATEC Web Conf., 321(2020), art. No. 03017. doi: 10.1051/matecconf/202032103017
    [22]
    Y.W. Zhai, D.A. Lados, E.J. Brown, and G.N. Vigilante, Understanding the microstructure and mechanical properties of Ti–6Al–4V and Inconel 718 alloys manufactured by Laser Engineered Net Shaping, Addit. Manuf., 27(2019), p. 334.
    [23]
    Z. Zhao, J. Chen, H. Tan, X. Lin, and W.D. Huang, Evolution of plastic deformation and its effect on mechanical properties of laser additive repaired Ti64ELI titanium alloy, Opt. Laser Technol., 92(2017), p. 36. doi: 10.1016/j.optlastec.2016.12.038
    [24]
    Y.Y. Zhu, J. Li, X.J. Tian, H.M. Wang, and D. Liu, Microstructure and mechanical properties of hybrid fabricated Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy by laser additive manufacturing, Mater. Sci. Eng. A, 607(2014), p. 427. doi: 10.1016/j.msea.2014.04.019
    [25]
    S.H. Mok, G.J. Bi, J. Folkes, and I. Pashby, Deposition of Ti–6Al–4V using a high power diode laser and wire, Part I: Investigation on the process characteristics, Surf. Coat. Technol., 202(2008), No. 16, p. 3933. doi: 10.1016/j.surfcoat.2008.02.008
    [26]
    A. Ho, H. Zhao, J.W. Fellowes, F. Martina, A.E. Davis, and P.B. Prangnell, On the origin of microstructural banding in Ti–6Al4V wire-arc based high deposition rate additive manufacturing, Acta Mater., 166(2019), p. 306. doi: 10.1016/j.actamat.2018.12.038
    [27]
    G.Y. Mi, Y. Xiang, C.M. Wang, L.D. Xiong, and Q.B. Ouyang, Microstructure and mechanical properties of SiCp/Al composite fabricated by concurrent wire-powder feeding laser deposition, J. Mater. Res. Technol., 22(2023), p. 66. doi: 10.1016/j.jmrt.2022.11.112
    [28]
    F.Q. Li, Z.Z. Gao, L.Q. Li, and Y.B. Chen, Microstructural study of MMC layers produced by combining wire and coaxial WC powder feeding in laser direct metal deposition, Opt. Laser Technol., 77(2016), p. 134. doi: 10.1016/j.optlastec.2015.09.018
    [29]
    F. Wang, J. Mei, and X.H. Wu, Compositionally graded Ti6Al4V+TiC made by direct laser fabrication using powder and wire, Mater. Des., 28(2007), No. 7, p. 2040. doi: 10.1016/j.matdes.2006.06.010
    [30]
    Y. Zhou and F.D. Ning, A feasibility study on directed energy deposition of SS 316L with coaxial wire-powder feeding, Manuf. Lett., 33(2022), p. 686. doi: 10.1016/j.mfglet.2022.07.085
    [31]
    W.U.H. Syed, A.J. Pinkerton, and L. Li, Combining wire and coaxial powder feeding in laser direct metal deposition for rapid prototyping, Appl. Surf. Sci., 252(2006), No. 13, p. 4803. doi: 10.1016/j.apsusc.2005.08.118
    [32]
    H.S. Lee, J.H. Yoon, C.H. Park, Y.G. Ko, D.H. Shin, and C.S. Lee, A study on diffusion bonding of superplastic Ti–6Al–4V ELI grade, J. Mater. Process. Technol., 187-188(2007), p. 526. doi: 10.1016/j.jmatprotec.2006.11.215
    [33]
    S. Sui, Y. Chew, F. Weng, C.L. Tan, Z.L. Du, and G.J. Bi, Achieving grain refinement and ultrahigh yield strength in laser aided additive manufacturing of Ti–6Al–4V alloy by trace Ni addition, Virtual Phys. Prototyp., 16(2021), No. 4, p. 417. doi: 10.1080/17452759.2021.1949091
    [34]
    L.T. Liu, C.Y. Chen, R.X. Zhao, et al. , In-situ nitrogen strengthening of selective laser melted Ti6Al4V with superior mechanical performance, Addit. Manuf., 46(2021), art. No. 102142.
    [35]
    X.P. Tan, Y. Kok, W.Q. Toh, et al., Revealing martensitic transformation and α/β interface evolution in electron beam melting three-dimensional-printed Ti–6Al–4V, Sci. Rep., 6(2016), art. No. 26039. doi: 10.1038/srep26039
    [36]
    A. Zafari, M.R. Barati, and K. Xia, Controlling martensitic decomposition during selective laser melting to achieve best ductility in high strength Ti–6Al–4V, Mater. Sci. Eng. A, 744(2019), p. 445. doi: 10.1016/j.msea.2018.12.047
    [37]
    R.W. Hertzberg, R.P. Vinci, and J.L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 5th ed., Wiley, New Jersey, 2012.
    [38]
    T. Song, T. Dong, S.L. Lu, et al., Simulation-informed laser metal powder deposition of Ti–6Al–4V with ultrafine α–β lamellar structures for desired tensile properties, Addit. Manuf., 46(2021), art. No. 102139.
    [39]
    S.C. Wang, M. Aindow, and M.J. Starink, Effect of self-accommodation on α/α boundary populations in pure titanium, Acta Mater., 51(2003), No. 9, p. 2485. doi: 10.1016/S1359-6454(03)00035-1
    [40]
    S.L. Lu, C.J. Todaro, Y.Y. Sun, T. Song, M. Brandt, and M. Qian, Variant selection in additively manufactured alpha-beta titanium alloys, J. Mater. Sci. Technol., 113(2022), p. 14. doi: 10.1016/j.jmst.2021.10.021
    [41]
    S.L. Lu, J.H. Wang, Y.Y. Sun, T. Song, and M. Qian, Identification of unusual large zones of Category I triple-alpha-variant clusters in additively manufactured Ti–4Al–2V alloy, Scripta Mater., 212(2022), art. No. 114578. doi: 10.1016/j.scriptamat.2022.114578
    [42]
    J.K. Ma, Y.S. Zhang, J.J. Li, Z.J. Wang, and J.C. Wang, Variant selection within one β grain in laser solid formed Ti–6Al–4V alloys, Mater. Charact., 185(2022), art. No. 111744. doi: 10.1016/j.matchar.2022.111744
    [43]
    H. Beladi, Q. Chao, and G.S. Rohrer, Variant selection and intervariant crystallographic planes distribution in martensite in a Ti–6Al–4V alloy, Acta Mater., 80(2014), p. 478. doi: 10.1016/j.actamat.2014.06.064
    [44]
    A. Carrozza, A. Aversa, F. Mazzucato, et al., An investigation on the effect of different multi-step heat treatments on the microstructure, texture and mechanical properties of the DED-produced Ti–6Al–4V alloy, Mater. Charact., 189(2022), art. No. 111958. doi: 10.1016/j.matchar.2022.111958
    [45]
    Z. Zhao, J. Chen, H. Tan, J.G. Tang, and X. Lin, In situ tailoring microstructure in laser solid formed titanium alloy for superior fatigue crack growth resistance, Scripta Mater., 174(2020), p. 53. doi: 10.1016/j.scriptamat.2019.08.028
    [46]
    A. Zafari and K. Xia, High Ductility in a fully martensitic microstructure: A paradox in a Ti alloy produced by selective laser melting, Mater. Res. Lett., 6(2018), No. 11, p. 627. doi: 10.1080/21663831.2018.1525773
    [47]
    J.L. Su, X.K. Ji, J. Liu, et al., Revealing the decomposition mechanisms of dislocations and metastable α′ phase and their effects on mechanical properties in a Ti–6Al–4V alloy, J. Mater. Sci. Technol., 107(2022), p. 136. doi: 10.1016/j.jmst.2021.07.048
    [48]
    J. Haubrich, J. Gussone, P. Barriobero-Vila, et al., The role of lattice defects, element partitioning and intrinsic heat effects on the microstructure in selective laser melted Ti–6Al–4V, Acta Mater., 167(2019), p. 136. doi: 10.1016/j.actamat.2019.01.039
    [49]
    W. Xu, M. Brandt, S. Sun, et al., Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition, Acta Mater., 85(2015), p. 74. doi: 10.1016/j.actamat.2014.11.028
    [50]
    C. de Formanoir, G. Martin, F. Prima, et al., Micromechanical behavior and thermal stability of a dual-phase α+α′ titanium alloy produced by additive manufacturing, Acta Mater., 162(2019), p. 149. doi: 10.1016/j.actamat.2018.09.050
    [51]
    M.H. Farshidianfar, A. Khajepour, and A.P. Gerlich, Effect of real-time cooling rate on microstructure in laser additive manufacturing, J. Mater. Process. Technol., 231(2016), p. 468. doi: 10.1016/j.jmatprotec.2016.01.017
    [52]
    C.L. Tan, R.S. Li, J.L. Su, et al., Review on field assisted metal additive manufacturing, Int. J. Mach. Tools Manuf., 189(2023), art. No. 104032. doi: 10.1016/j.ijmachtools.2023.104032
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(266) PDF Downloads(24) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return