Cite this article as: |
Qian Yin, Fan Wen, Zhigang Tao, Hai Pu, Tianci Deng, Yaoyao Meng, Qingbin Meng, Hongwen Jing, Bo Meng, and Jiangyu Wu, Effects of aggregate size distribution and carbon nanotubes on the mechanical properties of cemented gangue backfill samples under true triaxial compression, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-3014-5 |
Fan Wen E-mail: w15135313372@163.com
Jiangyu Wu E-mail: wujiangyu@cumt.edu.cn
Supplementary Information-s12613-024-3014-5.pdf |
[1] |
J.X. Zhang, B.Y. Li, N. Zhou, and Q. Zhang, Application of solid backfilling to reduce hard-roof caving and longwall coal face burst potential, Int. J. Rock Mech. Min. Sci., 88(2016), p. 197. doi: 10.1016/j.ijrmms.2016.07.025
|
[2] |
Q.H. Ma, G.S. Liu, X.C. Yang, and L.J. Guo, Physical model investigation on effects of drainage condition and cement addition on consolidation behavior of tailings slurry within backfilled stopes, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1490. doi: 10.1007/s12613-023-2642-5
|
[3] |
D.T. Wu, W.B. Guo, F. Luo, M. Li, and P. Wen, Stiffness of gangue backfilling body in goaf and its influence mechanism on rock strata control and stress evolution in gangue backfill mining, Environ. Sci. Pollut. Res., 30(2023), No. 22, p. 61789. doi: 10.1007/s11356-023-26509-0
|
[4] |
M. Li, J.X. Zhang, A.L. Li, and N. Zhou, Reutilisation of coal gangue and fly ash as underground backfill materials for surface subsidence control, J. Clean. Prod., 254(2020), art. No. 120113. doi: 10.1016/j.jclepro.2020.120113
|
[5] |
D. Ma, M. Rezania, H.S. Yu, and H.B. Bai, Variations of hydraulic properties of granular sandstones during water inrush: Effect of small particle migration, Eng. Geol., 217(2017), p. 61. doi: 10.1016/j.enggeo.2016.12.006
|
[6] |
G.L. Xue, E. Yilmaz, and Y.D. Wang, Progress and prospects of mining with backfill in metal mines in China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1455. doi: 10.1007/s12613-023-2663-0
|
[7] |
D. Ma, H.Y. Duan, J.F. Liu, X.B. Li, and Z.L. Zhou, The role of gangue on the mitigation of mining-induced hazards and environmental pollution: An experimental investigation, Sci. Total Environ., 664(2019), p. 436. doi: 10.1016/j.scitotenv.2019.02.059
|
[8] |
R. Mohammadi, A. Azadmehr, and A. Maghsoudi, Fabrication of the alginate-combusted coal gangue composite for simultaneous and effective adsorption of Zn(II) and Mn(II), J. Environ. Chem. Eng., 7(2019), No. 6, art. No. 103494. doi: 10.1016/j.jece.2019.103494
|
[9] |
X.Y. Liu, M. Jing, and Z.K. Bai, Heavy metal concentrations of soil, rock, and coal gangue in the geological profile of a large open-pit coal mine in China, Sustainability, 14(2022), No. 2, art. No. 1020. doi: 10.3390/su14021020
|
[10] |
S. Jarny, N. Roussel, R. Le Roy, and P. Coussot, Modelling thixotropic behavior of fresh cement pastes from MRI measurements, Cem. Concr. Res., 38(2008), No. 5, p. 616. doi: 10.1016/j.cemconres.2008.01.001
|
[11] |
X.B. Li, D.Y. Li, Z.X. Liu, G.Y. Zhao, and W.H. Wang, Determination of the minimum thickness of crown pillar for safe exploitation of a subsea gold mine based on numerical modelling, Int. J. Rock Mech. Min. Sci., 57(2013), p. 42. doi: 10.1016/j.ijrmms.2012.08.005
|
[12] |
J.X. Zhang, Q. Zhang, A.J.S.S. Spearing, X.X. Miao, S. Guo, and Q. Sun, Green coal mining technique integrating mining–dressing–gas draining–backfilling–mining, Int. J. Min. Sci. Technol., 27(2017), No. 1, p. 17. doi: 10.1016/j.ijmst.2016.11.014
|
[13] |
P. Lappi and M. Ollikainen, Optimal environmental policy for a mine under polluting waste rocks and stock pollution, Environ. Resour. Econ., 73(2019), No. 1, p. 133. doi: 10.1007/s10640-018-0253-9
|
[14] |
H.J. Lu, Y.R. Wang, D.Q. Gan, J. Wu, and X.J. Wu, Numerical investigation of the mechanical behavior of the backfill–rock composite structure under triaxial compression, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 802. doi: 10.1007/s12613-022-2554-9
|
[15] |
B.L. Xiao, S.J. Miao, D.H. Xia, H.T. Huang, and J.Y. Zhang, Detecting the backfill pipeline blockage and leakage through an LSTM-based deep learning model, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1573. doi: 10.1007/s12613-022-2560-y
|
[16] |
B.F. An, X.X. Miao, J.X. Zhang, F. Ju, and N. Zhou, Overlying strata movement of recovering standing pillars with solid backfilling by physical simulation, Int. J. Min. Sci. Technol., 26(2016), No. 2, p. 301. doi: 10.1016/j.ijmst.2015.12.017
|
[17] |
P. Jongpradist, S. Youwai, and C. Jaturapitakkul, Effective void ratio for assessing the mechanical properties of cement-clay admixtures at high water content, J. Geotech. Geoenviron. Eng., 137(2011), No. 6, p. 621. doi: 10.1061/(ASCE)GT.1943-5606.0000462
|
[18] |
E. Rahmani, M.K. Sharbatdar, and M. H.A.beygi, A comprehensive investigation into the effect of water to cement ratios and cement contents on the physical and mechanical properties of roller compacted concrete pavement (RCCP), Constr. Build. Mater., 253(2020), art. No. 119177. doi: 10.1016/j.conbuildmat.2020.119177
|
[19] |
T.J. Liu, Z.Z. Wang, D.J. Zou, A. Zhou, and J.Z. Du, Strength enhancement of recycled aggregate pervious concrete using a cement paste redistribution method, Cem. Concr. Res., 122(2019), p. 72. doi: 10.1016/j.cemconres.2019.05.004
|
[20] |
M. Fall and M. Benzaazoua, Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimization, Cem. Concr. Res., 35(2005), No. 2, p. 301. doi: 10.1016/j.cemconres.2004.05.020
|
[21] |
B. Ercikdi, H. Baki, and M. İzki, Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill, J. Environ. Manage., 115(2013), p. 5. doi: 10.1016/j.jenvman.2012.11.014
|
[22] |
A.X. Wu, Y. Wang, H.J. Wang, S.H. Yin, and X.X. Miao, Coupled effects of cement type and water quality on the properties of cemented paste backfill, Int. J. Miner. Process., 143(2015), p. 65. doi: 10.1016/j.minpro.2015.09.004
|
[23] |
B. Koohestani, Effect of saline admixtures on mechanical and microstructural properties of cementitious matrices containing tailings, Constr. Build. Mater., 156(2017), p. 1019. doi: 10.1016/j.conbuildmat.2017.09.048
|
[24] |
E. Yilmaz, T. Belem, B. Bussière, M. Mbonimpa, and M. Benzaazoua, Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents, Constr. Build. Mater., 75(2015), p. 99. doi: 10.1016/j.conbuildmat.2014.11.008
|
[25] |
M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287(2000), No. 5453, p. 637. doi: 10.1126/science.287.5453.637
|
[26] |
M.R. Du, H.W. Jing, W.H. Duan, G.S. Han, and S.J. Chen, Methylcellulose stabilized multi-walled carbon nanotubes dispersion for sustainable cement composites, Constr. Build. Mater., 146(2017), p. 76. doi: 10.1016/j.conbuildmat.2017.04.029
|
[27] |
M.S. Konsta-Gdoutos, Z.S. Metaxa, and S.P. Shah, Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites, Cem. Concr. Compos., 32(2010), No. 2, p. 110. doi: 10.1016/j.cemconcomp.2009.10.007
|
[28] |
Y. Gao, H.W. Jing, Z.F. Zhou, X.S. Shi, L. Li, and G.P. Fu, Roles of carbon nanotubes in reinforcing the interfacial transition zone and impermeability of concrete under different water-to-cement ratios, Constr. Build. Mater., 272(2021), art. No. 121664. doi: 10.1016/j.conbuildmat.2020.121664
|
[29] |
M. Eftekhari, S. Mohammadi, and M. Khanmohammadi, A hierarchical nano to macro multiscale analysis of monotonic behavior of concrete columns made of CNT-reinforced cement composite, Constr. Build. Mater., 175(2018), p. 134. doi: 10.1016/j.conbuildmat.2018.04.168
|
[30] |
L. Li, D.X. Xuan, A.O. Sojobi, S.H. Liu, S.H. Chu, and C.S. Poon, Development of nano-silica treatment methods to enhance recycled aggregate concrete, Cem. Concr. Compos., 118(2021), art. No. 103963. doi: 10.1016/j.cemconcomp.2021.103963
|
[31] |
S.L. Xu, J.T. Liu, and Q.H. Li, Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste, Constr. Build. Mater., 76(2015), p. 16. doi: 10.1016/j.conbuildmat.2014.11.049
|
[32] |
P. Sikora, M. Abd Elrahman, S.Y. Chung, K. Cendrowski, E. Mijowska, and D. Stephan, Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature, Cem. Concr. Compos., 95(2019), p. 193. doi: 10.1016/j.cemconcomp.2018.11.006
|
[33] |
J.Y. Wu, M.M. Feng, X.Y. Ni, X.B. Mao, Z.Q. Chen, and G.S. Han, Aggregate gradation effects on dilatancy behavior and acoustic characteristic of cemented rockfill, Ultrasonics, 92(2019), p. 79. doi: 10.1016/j.ultras.2018.09.008
|
[34] |
B.P. Gautam, D.K. Panesar, S.A. Sheikh, and F.J. Vecchio, Effect of coarse aggregate grading on the ASR expansion and damage of concrete, Cem. Concr. Res., 95(2017), p. 75. doi: 10.1016/j.cemconres.2017.02.022
|
[35] |
J.Y. Wu, H.W. Jing, Y. Gao, Q.B. Meng, Q. Yin, and Y. Du, Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill, Cem. Concr. Compos., 127(2022), art. No. 104408. doi: 10.1016/j.cemconcomp.2022.104408
|
[36] |
X. Ke, H.B. Hou, M. Zhou, Y. Wang, and X. Zhou, Effect of particle gradation on properties of fresh and hardened cemented paste backfill, Constr. Build. Mater., 96(2015), p. 378. doi: 10.1016/j.conbuildmat.2015.08.057
|
[37] |
Y. Gao, H.W. Jing, Z.X. Yu, L. Li, J.Y. Wu, and W.Q. Chen, Particle size distribution of aggregate effects on the reinforcing roles of carbon nanotubes in enhancing concrete ITZ, Constr. Build. Mater., 327(2022), art. No. 126964. doi: 10.1016/j.conbuildmat.2022.126964
|
[38] |
A. Kesimal, E. Yilmaz, B. Ercikdi, I. Alp, and H. Deveci, Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill, Mater. Lett., 59(2005), No. 28, p. 3703. doi: 10.1016/j.matlet.2005.06.042
|
[39] |
M.S. Meddah, S. Zitouni, and S. Belâabes, Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete, Constr. Build. Mater., 24(2010), No. 4, p. 505. doi: 10.1016/j.conbuildmat.2009.10.009
|
[40] |
A. Kashani, R. San Nicolas, G.G. Qiao, J.S.J. van Deventer, and J.L. Provis, Modelling the yield stress of ternary cement–slag–fly ash pastes based on particle size distribution, Powder Technol., 266(2014), p. 203. doi: 10.1016/j.powtec.2014.06.041
|
[41] |
S. Cao, E. Yilmaz, and W.D. Song, Evaluation of viscosity, strength and microstructural properties of cemented tailings backfill, Minerals, 8(2018), No. 8, art. No. 352. doi: 10.3390/min8080352
|
[42] |
J.Z. Zhang, X.P. Zhou, and Y.H. Du, Cracking behaviors and acoustic emission characteristics in brittle failure of flawed sandstone: A true triaxial experiment investigation, Rock Mech. Rock Eng., 56(2023), No. 1, p. 167. doi: 10.1007/s00603-022-03087-0
|
[43] |
B.G. He, L. Wang, X.T. Feng, and R.L. Zhen, Failure modes of jointed granite subjected to weak dynamic disturbance under true-triaxial compression, Rock Mech. Rock Eng., 56(2023), No. 11, p. 7939. doi: 10.1007/s00603-023-03507-9
|
[44] |
Z.C. Wang, W.C. Shi, R. Cong, and J.F. Guo, Mechanical properties of deep sandstone under true triaxial stress, J. Northeast. Univ. Nat. Sci., 44(2023), No. 5, p. 689.
|
[45] |
J.J. Pan, J.W. Jiang, Z.L. Cheng, H. Xu, and Y.Z. Zuo, Large-scale true triaxial test on stress-strain and strength properties of rockfill, Int. J. Geomech., 20(2020), No. 1, art. No. 04019146. doi: 10.1061/(ASCE)GM.1943-5622.0001527
|
[46] |
J.X. Zhang, M. Li, Z. Liu, and N. Zhou, Fractal characteristics of crushed particles of coal gangue under compaction, Powder Technol., 305(2017), p. 12. doi: 10.1016/j.powtec.2016.09.049
|
[47] |
X.T. Feng, B. Haimson, X.C. Li, et al., ISRM suggested method: Determining deformation and failure characteristics of rocks subjected to true triaxial compression, Rock Mech. Rock Eng., 52(2019), No. 6, p. 2011. doi: 10.1007/s00603-019-01782-z
|
[48] |
J.Y. Wu, H.W. Jing, Q. Yin, B. Meng, and G.S. Han, Strength and ultrasonic properties of cemented waste rock backfill considering confining pressure, dosage and particle size effects, Constr. Build. Mater., 242(2020), art. No. 118132. doi: 10.1016/j.conbuildmat.2020.118132
|
[49] |
J.Y. Wu, M.M. Feng, X.B. Mao, et al., Particle size distribution of aggregate effects on mechanical and structural properties of cemented rockfill: Experiments and modeling, Constr. Build. Mater., 193(2018), p. 295. doi: 10.1016/j.conbuildmat.2018.10.208
|
[50] |
J.S. Kim, K.S. Lee, W.J. Cho, H.J. Choi, and G.C. Cho, A comparative evaluation of stress–strain and acoustic emission methods for quantitative damage assessments of brittle rock, Rock Mech. Rock Eng., 48(2015), No. 2, p. 495. doi: 10.1007/s00603-014-0590-0
|