Lijia Wan, Tingting Zhang, Ran Sun, Chunlai Huang, Ting Lu, Junping Hu,  and Likun Pan, Hybrid CoMoO3/CoMoO4 Nanorods for Enhanced Lithium-Ion Battery Performance, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-3051-0
Cite this article as:
Lijia Wan, Tingting Zhang, Ran Sun, Chunlai Huang, Ting Lu, Junping Hu,  and Likun Pan, Hybrid CoMoO3/CoMoO4 Nanorods for Enhanced Lithium-Ion Battery Performance, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-3051-0
Research Article

Hybrid CoMoO3/CoMoO4 Nanorods for Enhanced Lithium-Ion Battery Performance

+ Author Affiliations
  • Received: 5 October 2024Revised: 20 November 2024Accepted: 21 November 2024Available online: 22 November 2024
  • Electrode materials that rely on conversion reactions for lithium-ion batteries (LIBs) are known for their higher energy densities. However, a key issue in their design is to bolster their stability and to minimize the volume variations that occur during lithiation and delithiation. Herein, an effective strategy has been devised to fulfill the fully reversible conversion reaction for lithium storage in CoMoO4 by hybridizing CoMoO3. The CoMoO3/CoMoO4 with a nanorod structure was synthesized via one-step annealing treatment after a solvothermal process. In such a structure, CoMoO3/CoMoO4 nanorod can significantly boost their mechanical robustness and offer ample space to counteract volume fluctuations throughout successive cycles, owing to the cooperative interaction between CoMoO3 and CoMoO4. The CoMoO3/CoMoO4 exhibits a superior lithium-storage capacity (919.6 mAh/g at 0.1 A/g after cycling for 200) and cycling stability (683.4 mAh/g after at 1 A/g after cycling for 600). The CoMoO3/CoMoO4 show high potential as an anode material for LIBs.

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(25) PDF Downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return