Tao Wan, Yi Yuan, and Wenqiong He, Preparation of a cationic azobenzene dye-montmorillonite intercalation compound and its photochemical behavior, J. Univ. Sci. Technol. Beijing, 13(2006), No. 3, pp. 281-286. https://doi.org/10.1016/S1005-8850(06)60059-5
Cite this article as:
Tao Wan, Yi Yuan, and Wenqiong He, Preparation of a cationic azobenzene dye-montmorillonite intercalation compound and its photochemical behavior, J. Univ. Sci. Technol. Beijing, 13(2006), No. 3, pp. 281-286. https://doi.org/10.1016/S1005-8850(06)60059-5
Materials

Preparation of a cationic azobenzene dye-montmorillonite intercalation compound and its photochemical behavior

+ Author Affiliations
  • Corresponding author:

    Tao Wan    E-mail: wantaos@sohu.com

  • Received: 8 April 2005
  • Montmorillonite/cationic azobenzene dye (GTL) intercalation compounds were prepared by the conventional ion exchange method. As compared with that of pure GTL, the thermal stability of the intercalated GTL was greatly enhanced, and the absorption band corresponding to azobenzene group in intercalated GTL shifted towards a longer wavelength by 55 nm, which could be ascribed to the strong conjugation of GTL supramolecular order structure (J cluster) confined in a nanoscale space of montmorillonite interlayer gallery. The microstructures of the resulting intercalation compounds could be successfully controlled by varying the amount of dye loaded as evidenced by the basal spacing of the intercalation compounds. The intercalated azo dye in the montmorillonite interlayer space exhibited reversible trans-to-cis photoisomerization and thermal cis-to-trans reaction. FTIR proved the successful intercalation of GTL into the silicate layer.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(111) PDF Downloads(6) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return