Farid Akhtar, Shiju Guo, Jawid Askari, and Jianjun Tian, Sintering behavior, microstructure and properties of TiC-FeCr hard alloy, J. Univ. Sci. Technol. Beijing, 14(2007), No. 1, pp. 89-93. https://doi.org/10.1016/S1005-8850(07)60018-8
Cite this article as:
Farid Akhtar, Shiju Guo, Jawid Askari, and Jianjun Tian, Sintering behavior, microstructure and properties of TiC-FeCr hard alloy, J. Univ. Sci. Technol. Beijing, 14(2007), No. 1, pp. 89-93. https://doi.org/10.1016/S1005-8850(07)60018-8
Materials

Sintering behavior, microstructure and properties of TiC-FeCr hard alloy

+ Author Affiliations
  • TiC based cermets were produced with FeCr, as a binder, by conventional P/M (powder metallurgy) to near 〉97% of the theoretical density. Sintering temperature significantly affects the mechanical properties of the composite. The sintering temperature of 〉1360℃ caused severe chemical reaction between TiC particles and the binder phase. In the TiC-FeCr cermets, the mechanical properties did not vary linearly with the carbide content. Optimum mechanical properties were found in the composite containing 57wt% TiC reinforcement, when sintered at 1360℃ for 1 h. Use of carbon as an additive enhanced the mechanical properties of the composites. Cermets containing carbon as an additive with 49wt% TiC exhibited attractive mechanical properties. The microstructure of the developed composite contained less or no debonding, representing good wettabifity of the binder with TiC particles. Homogeneous distribution of the TiC particles ensured the presence of isotropic mechanical properties and homogeneous distribution of stresses in the composite. Preliminary experiments for evaluation of the oxidation resistance of FeCr bonded TiC cermets indicate that they are more resistant than WC-Co hardmetals.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(377) PDF Downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return