Sheng-ping He, and K. C. Mills, Solidification and crystallization properties of CaO-SiO2-Na2O based mold fluxes, Int. J. Miner. Metall. Mater., 16(2009), No. 3, pp.261-264. https://dx.doi.org/10.1016/S1674-4799(09)60047-9
Cite this article as: Sheng-ping He, and K. C. Mills, Solidification and crystallization properties of CaO-SiO2-Na2O based mold fluxes, Int. J. Miner. Metall. Mater., 16(2009), No. 3, pp.261-264. https://dx.doi.org/10.1016/S1674-4799(09)60047-9
Metallurgy

Solidification and crystallization properties of CaO-SiO2-Na2O based mold fluxes

Author Affilications
Funds: 

This work was financially supported by the National Natural Science Foundation of China (No.50474023) and the Natural Science Young Scholars Foundation of Chongqing University (No.2006c-02).

  • Crystallization properties play an important role in keeping a smooth running of continuous casting process and high surface quality of cast strands. To reduce fluorine pollution in slag, a new type of CaO-SiO2-Na2O (CSN) based mold flux was studied. The solidification and crystallization properties, including crystallization temperature, crystallization ratio and solidification mineragraphy, were measured, which were compared with the CaO-SiO2-CaF2 (GF) mold flux. The results show that the crystallization performance is equal to the high fluoride mold powder and CSN can be used for peritectic steel grades sensitive to longitudinal cracking in continuous casting.
  • Related Articles

    [1]Ze-yun Cai, Bo Song, Long-fei Li, Zhen Liu, Xiao-kang Cui. Effect of CeO2 on heat transfer and crystallization behavior of rare earth alloy steel mold fluxes [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(5): 565-572. DOI: 10.1007/s12613-019-1765-1
    [2]Xiao-fang Shi, Li-zhong Chang, Jian-jun Wang. Effect of ultrasonic power introduced by a mold copper plate on the solidification process [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(2): 139-146. DOI: 10.1007/s12613-017-1388-3
    [3]Cheng-bin Shi, Jung-wook Cho, Ding-li Zheng, Jing Li. Fluoride evaporation and crystallization behavior of CaF2–CaO–Al2O3–(TiO2) slag for electroslag remelting of Ti-containing steels [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(6): 627-636. DOI: 10.1007/s12613-016-1275-3
    [4]C. J. Ajayakumar, A. G. Kunjomana. Influence of Te doping on the dielectric and optical properties of InBi crystals grown by directional freezing [J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(5): 503-509. DOI: 10.1007/s12613-014-0935-4
    [5]Zuo-tai Zhang, Guang-hua Wen, Ying-yi Zhang. Crystallization behavior of F-free mold fluxes [J]. International Journal of Minerals, Metallurgy and Materials, 2011, 18(2): 150-158. DOI: 10.1007/s12613-011-0415-z
    [6]Feng Yan, Tiejun Zhu, Xinbing Zhao, Shurong Dong. A study of the crystallization kinetics of Ge-Te amorphous systems [J]. International Journal of Minerals, Metallurgy and Materials, 2007, 14(S1): 64-67. DOI: 10.1016/S1005-8850(07)60111-X
    [7]Heming Zhao, Xinhua Wang, Jiongming Zhang. Research on mold flux for hypo-peritectic steel at high casting speed [J]. International Journal of Minerals, Metallurgy and Materials, 2007, 14(3): 219-224. DOI: 10.1016/S1005-8850(07)60042-5
    [8]Zhihong Tian, Junpu Jiang, Kaike Cai, Xinhua Wang, Lixin Zhu, Xiaodong Yin, Hongzhi Shi. Effects of oxygen potential and flux composition on dephosphorization and rephosphorization of molten steel [J]. International Journal of Minerals, Metallurgy and Materials, 2005, 12(5): 394-399.
    [9]Zhihong Tian, Yanyong Guo, Kaike Cai, Liqun Ai, Huien Shi. Kinetic study on deep dephosphorization treatment of liquid steel by BaO-based fluxes [J]. International Journal of Minerals, Metallurgy and Materials, 2004, 11(6): 494-499.
    [10]Jiongming Zhang, Xinhua Wang, Wanjun Wang. Leakage in Mold Slit during Inverse Solidification [J]. International Journal of Minerals, Metallurgy and Materials, 2001, 8(2): 101-104.
  • Cited by

    Periodical cited type(13)

    1. Yan Zhou, Boxin Li, Han Zhou, et al. Strategic alloy design for liquid metal batteries achieving high performance and economic stability. Journal of Energy Storage, 2024, 100: 113672. DOI:10.1016/j.est.2024.113672
    2. Han Zhou, Lei Huang, Meng Yu, et al. Stabilizing dual-cation liquid metal battery for large-scale energy storage: A comprehensive hybrid design approach. Energy Storage Materials, 2024, 70: 103540. DOI:10.1016/j.ensm.2024.103540
    3. Xianbo Zhou, Lei Fan, Shuai Yan, et al. Enhancing capacity utilization of Li|LiCl-KCl-CsCl|Bi (300 °C) liquid metal batteries through the application of external magnetic fields. Journal of Power Sources, 2024, 624: 235516. DOI:10.1016/j.jpowsour.2024.235516
    4. Yongxin Wu, Muya Cai, Hongya Wang, et al. Preparation of Pb-Ca Master Alloy by Molten Salt Electrolysis. Journal of The Electrochemical Society, 2023, 170(12): 122505. DOI:10.1149/1945-7111/ad155a
    5. Shuai Yan, Lei Fan, Haomiao Li, et al. Novel High-Voltage Zn-Based Electrode Based on Displacement Reaction for Liquid Metal Batteries. ACS Sustainable Chemistry & Engineering, 2023, 11(31): 11693. DOI:10.1021/acssuschemeng.3c04009
    6. Hongliang Xie, Jiangyuan Feng, Hailei Zhao. Lithium metal batteries with all-solid/full-liquid configurations. Energy Storage Materials, 2023, 61: 102918. DOI:10.1016/j.ensm.2023.102918
    7. Hao Wang, Cheng Peng. Solid electrolyte membrane-containing rechargeable high-temperature molten salt electrolyte-based batteries. Sustainable Energy & Fuels, 2023, 7(2): 330. DOI:10.1039/D2SE01525K
    8. Sanjida Afrin, Enamul Haque, Baiyu Ren, et al. Liquid elementary metals and alloys: Synthesis, characterization, properties, and applications. Applied Materials Today, 2023, 31: 101746. DOI:10.1016/j.apmt.2023.101746
    9. Zhipan Li, Hongzhi Liu. Study on electrochemical properties of lead calcium tin anode for hydrometallurgy. Alexandria Engineering Journal, 2023, 82: 389. DOI:10.1016/j.aej.2023.10.024
    10. Yuhang Gao, Zhuqing Zhao, Yongxin Wu, et al. Separation of antimony from lead-antimony alloy by molten salt electrolysis. Separation and Purification Technology, 2022, 299: 121700. DOI:10.1016/j.seppur.2022.121700
    11. Guo-qing Li, Yue Zhao, Yan Zhou, et al. Intermediate-temperature liquid-solid metal battery by adopting Li4Ti5O12-based material as cathode. Electrochimica Acta, 2022, 409: 139990. DOI:10.1016/j.electacta.2022.139990
    12. Wenlong Zhang, Chenzheng Liao, Xiaohui Ning. An advanced Ni–Graphite molten salt battery with 95 °C operating temperature for energy storage application. Chemical Engineering Journal, 2022, 435: 135110. DOI:10.1016/j.cej.2022.135110
    13. Shu-qiang Jiao, Ming-yong Wang, Wei-li Song. Editorial for special issue on high-temperature molten salt chemistry and technology. International Journal of Minerals, Metallurgy and Materials, 2020, 27(12): 1569. DOI:10.1007/s12613-020-2225-7

    Other cited types(0)

Catalog

    Share Article

    Article Metrics

    Article views (237) PDF downloads (17) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return