1. |
Yan Zhou, Boxin Li, Han Zhou, et al. Strategic alloy design for liquid metal batteries achieving high performance and economic stability. Journal of Energy Storage, 2024, 100: 113672.
DOI:10.1016/j.est.2024.113672
|
2. |
Han Zhou, Lei Huang, Meng Yu, et al. Stabilizing dual-cation liquid metal battery for large-scale energy storage: A comprehensive hybrid design approach. Energy Storage Materials, 2024, 70: 103540.
DOI:10.1016/j.ensm.2024.103540
|
3. |
Xianbo Zhou, Lei Fan, Shuai Yan, et al. Enhancing capacity utilization of Li|LiCl-KCl-CsCl|Bi (300 °C) liquid metal batteries through the application of external magnetic fields. Journal of Power Sources, 2024, 624: 235516.
DOI:10.1016/j.jpowsour.2024.235516
|
4. |
Yongxin Wu, Muya Cai, Hongya Wang, et al. Preparation of Pb-Ca Master Alloy by Molten Salt Electrolysis. Journal of The Electrochemical Society, 2023, 170(12): 122505.
DOI:10.1149/1945-7111/ad155a
|
5. |
Shuai Yan, Lei Fan, Haomiao Li, et al. Novel High-Voltage Zn-Based Electrode Based on Displacement Reaction for Liquid Metal Batteries. ACS Sustainable Chemistry & Engineering, 2023, 11(31): 11693.
DOI:10.1021/acssuschemeng.3c04009
|
6. |
Hongliang Xie, Jiangyuan Feng, Hailei Zhao. Lithium metal batteries with all-solid/full-liquid configurations. Energy Storage Materials, 2023, 61: 102918.
DOI:10.1016/j.ensm.2023.102918
|
7. |
Hao Wang, Cheng Peng. Solid electrolyte membrane-containing rechargeable high-temperature molten salt electrolyte-based batteries. Sustainable Energy & Fuels, 2023, 7(2): 330.
DOI:10.1039/D2SE01525K
|
8. |
Sanjida Afrin, Enamul Haque, Baiyu Ren, et al. Liquid elementary metals and alloys: Synthesis, characterization, properties, and applications. Applied Materials Today, 2023, 31: 101746.
DOI:10.1016/j.apmt.2023.101746
|
9. |
Zhipan Li, Hongzhi Liu. Study on electrochemical properties of lead calcium tin anode for hydrometallurgy. Alexandria Engineering Journal, 2023, 82: 389.
DOI:10.1016/j.aej.2023.10.024
|
10. |
Yuhang Gao, Zhuqing Zhao, Yongxin Wu, et al. Separation of antimony from lead-antimony alloy by molten salt electrolysis. Separation and Purification Technology, 2022, 299: 121700.
DOI:10.1016/j.seppur.2022.121700
|
11. |
Guo-qing Li, Yue Zhao, Yan Zhou, et al. Intermediate-temperature liquid-solid metal battery by adopting Li4Ti5O12-based material as cathode. Electrochimica Acta, 2022, 409: 139990.
DOI:10.1016/j.electacta.2022.139990
|
12. |
Wenlong Zhang, Chenzheng Liao, Xiaohui Ning. An advanced Ni–Graphite molten salt battery with 95 °C operating temperature for energy storage application. Chemical Engineering Journal, 2022, 435: 135110.
DOI:10.1016/j.cej.2022.135110
|
13. |
Shu-qiang Jiao, Ming-yong Wang, Wei-li Song. Editorial for special issue on high-temperature molten salt chemistry and technology. International Journal of Minerals, Metallurgy and Materials, 2020, 27(12): 1569.
DOI:10.1007/s12613-020-2225-7
|