Hai Lin and Ying-bo Dong, Coating mechanism of nano-TiO2 films on the surface of ultra-fine calcined coal kaolin particles, Int. J. Miner. Metall. Mater., 18(2011), No. 4, pp. 487-493. https://doi.org/10.1007/s12613-011-0467-0
Cite this article as:
Hai Lin and Ying-bo Dong, Coating mechanism of nano-TiO2 films on the surface of ultra-fine calcined coal kaolin particles, Int. J. Miner. Metall. Mater., 18(2011), No. 4, pp. 487-493. https://doi.org/10.1007/s12613-011-0467-0
Hai Lin and Ying-bo Dong, Coating mechanism of nano-TiO2 films on the surface of ultra-fine calcined coal kaolin particles, Int. J. Miner. Metall. Mater., 18(2011), No. 4, pp. 487-493. https://doi.org/10.1007/s12613-011-0467-0
Citation:
Hai Lin and Ying-bo Dong, Coating mechanism of nano-TiO2 films on the surface of ultra-fine calcined coal kaolin particles, Int. J. Miner. Metall. Mater., 18(2011), No. 4, pp. 487-493. https://doi.org/10.1007/s12613-011-0467-0
A new type of mineral composite was made by calcined coal kaolin. The interaction mechanism of an inorganic modification reagent TiOSO4 with the surface of ultra-fine calcined coal kaolin particles (substrate) was studied by X-ray photoelectron spectroscopy. The results show that chemisorption exists in the phase boundary between the modification agent and the substrate surface, while physical adsorption occurs on the modification layers of hydrate titanium dioxide. The interaction force was calculated and analyzed according to DLVO theory between ultra-fine calcined coal kaolin particles and hydrate titanium dioxide nano-particles in the modification system. It is shown that the both electrostatic force and van der Waals force are attractive, and the coacervation between ultra-fine calcined coal kaolin particles and hydrate titanium dioxide nano-particles leads to the coating of hydrate titanium dioxide on the surface of ultra-fine calcined coal kaolin particles.
A new type of mineral composite was made by calcined coal kaolin. The interaction mechanism of an inorganic modification reagent TiOSO4 with the surface of ultra-fine calcined coal kaolin particles (substrate) was studied by X-ray photoelectron spectroscopy. The results show that chemisorption exists in the phase boundary between the modification agent and the substrate surface, while physical adsorption occurs on the modification layers of hydrate titanium dioxide. The interaction force was calculated and analyzed according to DLVO theory between ultra-fine calcined coal kaolin particles and hydrate titanium dioxide nano-particles in the modification system. It is shown that the both electrostatic force and van der Waals force are attractive, and the coacervation between ultra-fine calcined coal kaolin particles and hydrate titanium dioxide nano-particles leads to the coating of hydrate titanium dioxide on the surface of ultra-fine calcined coal kaolin particles.