Cite this article as:

Shu-lan Wang, Shi-chao Li, Long-fei Wan, and Chuan-hua Wang, Electro-deoxidation of V2O3 in molten CaCl2-NaCl-CaO, Int. J. Miner. Metall. Mater., 19(2012), No. 3, pp.212-216. https://dx.doi.org/10.1007/s12613-012-0540-3
Shu-lan Wang, Shi-chao Li, Long-fei Wan, and Chuan-hua Wang, Electro-deoxidation of V2O3 in molten CaCl2-NaCl-CaO, Int. J. Miner. Metall. Mater., 19(2012), No. 3, pp.212-216. https://dx.doi.org/10.1007/s12613-012-0540-3
引用本文 PDF XML SpringerLink

Electro-deoxidation of V2O3 in molten CaCl2-NaCl-CaO

摘要: The electro-deoxidation of V2O3 precursors was studied. Experiments were carried out with a two-terminal electrochemical cell, which was comprised of a molten electrolyte of CaCl2 and NaCl with additions of CaO, a cathode of compact V2O3, and a graphite anode under the potential of 3.0 V at 1173 K. The phase constitution and composition as well as the morphology of the samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). 3 g of V2O3 could be converted to vanadium metal powder within the processing time of 8 h. The kinetic pathway was investigated by analyzing the product phase in samples prepared at different reduction stages. CaO added in the reduction path of V2O3 formed the intermediate product CaV2O4.

 

Electro-deoxidation of V2O3 in molten CaCl2-NaCl-CaO

Abstract: The electro-deoxidation of V2O3 precursors was studied. Experiments were carried out with a two-terminal electrochemical cell, which was comprised of a molten electrolyte of CaCl2 and NaCl with additions of CaO, a cathode of compact V2O3, and a graphite anode under the potential of 3.0 V at 1173 K. The phase constitution and composition as well as the morphology of the samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). 3 g of V2O3 could be converted to vanadium metal powder within the processing time of 8 h. The kinetic pathway was investigated by analyzing the product phase in samples prepared at different reduction stages. CaO added in the reduction path of V2O3 formed the intermediate product CaV2O4.

 

/

返回文章
返回