Cite this article as:

Yuan-zhi Zhu, Zhe Zhu, and Jian-ping Xu, Grain boundary segregation of minor arsenic and nitrogen at elevated temperatures in a microalloyed steel, Int. J. Miner. Metall. Mater., 19(2012), No. 5, pp.399-403. https://dx.doi.org/10.1007/s12613-012-0570-x
Yuan-zhi Zhu, Zhe Zhu, and Jian-ping Xu, Grain boundary segregation of minor arsenic and nitrogen at elevated temperatures in a microalloyed steel, Int. J. Miner. Metall. Mater., 19(2012), No. 5, pp.399-403. https://dx.doi.org/10.1007/s12613-012-0570-x
引用本文 PDF XML SpringerLink

Grain boundary segregation of minor arsenic and nitrogen at elevated temperatures in a microalloyed steel

摘要: Auger electron spectroscopy (AES) was used to investigate the grain boundary segregation of arsenic and nitrogen in a kind of microalloyed steel produced by a compact strip production (CSP) technology at 950 to 1100℃, which are similar to the hot working temperature of the steel on a CSP production line. It was discovered that arsenic segregated on grain boundaries when the steel was annealed at 950℃ for 2 h. When the annealing temperature increased to 1100℃, arsenic was also found to have segregated on grain boundaries in the early annealing stage, for instance, within the first 5 min annealing time. However, if the holding time of the steel at this temperature increased to 2 h, arsenic diffused away from grain boundaries into the matrix again. Nitrogen was not found to have segregated on grain boundaries when the steel was annealed at a relatively low temperature, such as 950℃. But when the annealing temperature increased to 1100℃, nitrogen was detected to have segregated at grain boundaries in the steel.

 

Grain boundary segregation of minor arsenic and nitrogen at elevated temperatures in a microalloyed steel

Abstract: Auger electron spectroscopy (AES) was used to investigate the grain boundary segregation of arsenic and nitrogen in a kind of microalloyed steel produced by a compact strip production (CSP) technology at 950 to 1100℃, which are similar to the hot working temperature of the steel on a CSP production line. It was discovered that arsenic segregated on grain boundaries when the steel was annealed at 950℃ for 2 h. When the annealing temperature increased to 1100℃, arsenic was also found to have segregated on grain boundaries in the early annealing stage, for instance, within the first 5 min annealing time. However, if the holding time of the steel at this temperature increased to 2 h, arsenic diffused away from grain boundaries into the matrix again. Nitrogen was not found to have segregated on grain boundaries when the steel was annealed at a relatively low temperature, such as 950℃. But when the annealing temperature increased to 1100℃, nitrogen was detected to have segregated at grain boundaries in the steel.

 

/

返回文章
返回