Zhi-xiang Liu, Wen-gang Dang, and Xian-qun He, Undersea safety mining of the large gold deposit in Xinli District of Sanshandao Gold Mine, Int. J. Miner. Metall. Mater., 19(2012), No. 7, pp. 574-583. https://doi.org/10.1007/s12613-012-0598-y
Cite this article as:
Zhi-xiang Liu, Wen-gang Dang, and Xian-qun He, Undersea safety mining of the large gold deposit in Xinli District of Sanshandao Gold Mine, Int. J. Miner. Metall. Mater., 19(2012), No. 7, pp. 574-583. https://doi.org/10.1007/s12613-012-0598-y
Zhi-xiang Liu, Wen-gang Dang, and Xian-qun He, Undersea safety mining of the large gold deposit in Xinli District of Sanshandao Gold Mine, Int. J. Miner. Metall. Mater., 19(2012), No. 7, pp. 574-583. https://doi.org/10.1007/s12613-012-0598-y
Citation:
Zhi-xiang Liu, Wen-gang Dang, and Xian-qun He, Undersea safety mining of the large gold deposit in Xinli District of Sanshandao Gold Mine, Int. J. Miner. Metall. Mater., 19(2012), No. 7, pp. 574-583. https://doi.org/10.1007/s12613-012-0598-y
The exploration of undersea resources becomes popular as land resources decrease. Researches were conducted with emphasis on the safety and efficiency of undersea mining of the large gold deposit in Xinli District of Sanshandao Gold Mine. A series of tests for the physical and mechanical characteristics of rock mass were carried out, and the three-dimensional geo-stress distribution was tested in the mining area. Further, a similar experimental simulation platform, which revealed the mechanism of water inrush and ascertained the reasonable thickness of the safety isolate layer, was established for the undersea mining. Meanwhile, the feasibility of cancelling the ore pillars and the safety conditions was checked by numerical simulation. The simulation results show that it is safe to exploit the ore body below the -85 m level (presently, the exploitation level is below -160 m in Xinli District), and the ore pillars can be cancelled below the -560 m level. Furthermore, a novel backfill method was designed to reduce the rock strata disturbance and settlement, and the settlement of roof strata was monitored during the mining process. Engineering practice shows that the settlement of roof strata was small and that no disaster happened. This indicates that the undersea safety mining technology of the large gold deposit is achieved in Xinli District.
The exploration of undersea resources becomes popular as land resources decrease. Researches were conducted with emphasis on the safety and efficiency of undersea mining of the large gold deposit in Xinli District of Sanshandao Gold Mine. A series of tests for the physical and mechanical characteristics of rock mass were carried out, and the three-dimensional geo-stress distribution was tested in the mining area. Further, a similar experimental simulation platform, which revealed the mechanism of water inrush and ascertained the reasonable thickness of the safety isolate layer, was established for the undersea mining. Meanwhile, the feasibility of cancelling the ore pillars and the safety conditions was checked by numerical simulation. The simulation results show that it is safe to exploit the ore body below the -85 m level (presently, the exploitation level is below -160 m in Xinli District), and the ore pillars can be cancelled below the -560 m level. Furthermore, a novel backfill method was designed to reduce the rock strata disturbance and settlement, and the settlement of roof strata was monitored during the mining process. Engineering practice shows that the settlement of roof strata was small and that no disaster happened. This indicates that the undersea safety mining technology of the large gold deposit is achieved in Xinli District.