留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 19 Issue 7
Jul.  2012
数据统计

分享

计量
  • 文章访问数:  329
  • HTML全文浏览量:  90
  • PDF下载量:  10
  • 被引次数: 0
Chao-ping Jiang, Ya-zhe Xing, Feng-ying Zhang,  and Jian-min Hao, Microstructure and corrosion resistance of Fe/Mo composite amorphous coatings prepared by air plasma spraying, Int. J. Miner. Metall. Mater., 19(2012), No. 7, pp. 657-662. https://doi.org/10.1007/s12613-012-0609-z
Cite this article as:
Chao-ping Jiang, Ya-zhe Xing, Feng-ying Zhang,  and Jian-min Hao, Microstructure and corrosion resistance of Fe/Mo composite amorphous coatings prepared by air plasma spraying, Int. J. Miner. Metall. Mater., 19(2012), No. 7, pp. 657-662. https://doi.org/10.1007/s12613-012-0609-z
引用本文 PDF XML SpringerLink

Microstructure and corrosion resistance of Fe/Mo composite amorphous coatings prepared by air plasma spraying

  • 通讯作者:

    Chao-ping Jiang    E-mail: jcp100415@126.com

  • Fe/Mo composite coatings were prepared by air plasma spraying (APS) using Fe-based and Mo-based amorphous and nanocrystalline mixed powders. Microstructural studies show that the composite coatings present a layered structure with low porosity due to adding the self-bonded Mo-based alloy. Corrosion behaviors of the composite coatings, the Fe-based coatings and the Mo-based coatings were investigated by electrochemical measurements and salt spray tests. Electrochemical results show that the composite coatings exhibit a lower polarization current density and higher corrosion potentials than the Fe-based coating when tested in 3.5wt% NaCl solutions, indicating superior corrosion resistance compared with the Fe-based coating. Also with the increase in addition of the Mo-based alloy, a raised corrosion resistance, inferred by an increase in corrosion potential and a decrease in polarization current density, can be found. The results of salt spray tests again show that the corrosion resistance is enhanced by adding the Mo-based alloy, which helps to reduce the porosity of the composite coatings and enhance the stability of the passive films.
  • Microstructure and corrosion resistance of Fe/Mo composite amorphous coatings prepared by air plasma spraying

    + Author Affiliations
    • Fe/Mo composite coatings were prepared by air plasma spraying (APS) using Fe-based and Mo-based amorphous and nanocrystalline mixed powders. Microstructural studies show that the composite coatings present a layered structure with low porosity due to adding the self-bonded Mo-based alloy. Corrosion behaviors of the composite coatings, the Fe-based coatings and the Mo-based coatings were investigated by electrochemical measurements and salt spray tests. Electrochemical results show that the composite coatings exhibit a lower polarization current density and higher corrosion potentials than the Fe-based coating when tested in 3.5wt% NaCl solutions, indicating superior corrosion resistance compared with the Fe-based coating. Also with the increase in addition of the Mo-based alloy, a raised corrosion resistance, inferred by an increase in corrosion potential and a decrease in polarization current density, can be found. The results of salt spray tests again show that the corrosion resistance is enhanced by adding the Mo-based alloy, which helps to reduce the porosity of the composite coatings and enhance the stability of the passive films.
    • loading

    Catalog


    • /

      返回文章
      返回