Lei Wang, Yao Wang, Yang Liu, Xiu Song, Xu-dong Lü, and Bei-jiang Zhang, Coarsening behavior of γ′ and γ″ phases in GH4169 superalloy by electric field treatment, Int. J. Miner. Metall. Mater., 20(2013), No. 9, pp. 861-866. https://doi.org/10.1007/s12613-013-0807-3
Cite this article as:
Lei Wang, Yao Wang, Yang Liu, Xiu Song, Xu-dong Lü, and Bei-jiang Zhang, Coarsening behavior of γ′ and γ″ phases in GH4169 superalloy by electric field treatment, Int. J. Miner. Metall. Mater., 20(2013), No. 9, pp. 861-866. https://doi.org/10.1007/s12613-013-0807-3
Lei Wang, Yao Wang, Yang Liu, Xiu Song, Xu-dong Lü, and Bei-jiang Zhang, Coarsening behavior of γ′ and γ″ phases in GH4169 superalloy by electric field treatment, Int. J. Miner. Metall. Mater., 20(2013), No. 9, pp. 861-866. https://doi.org/10.1007/s12613-013-0807-3
Citation:
Lei Wang, Yao Wang, Yang Liu, Xiu Song, Xu-dong Lü, and Bei-jiang Zhang, Coarsening behavior of γ′ and γ″ phases in GH4169 superalloy by electric field treatment, Int. J. Miner. Metall. Mater., 20(2013), No. 9, pp. 861-866. https://doi.org/10.1007/s12613-013-0807-3
The coarsening behaviors of γ′ and γ″ phases in GH4169 alloy aged at 1023 and 1073 K with electric field treatment (EFT) were investigated by transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). It is demonstrated that precipitation coarsening occurs, and the growth activation energies of γ′ and γ″ phases can be decreased to 115.6 and 198.1 kJ·mol−1, respectively, by applying the electric field. The formation of a large number of vacancies in the matrix is induced by EFT. Due to the occurrence of vacancy migration, the diffusion coefficients of Al and Nb atoms are increased to be 1.6–5.0 times larger than those without EFT at 1023 or 1073 K. Furthermore, the formation of vacancy clusters is promoted by EFT, and the increase in strain energy for the coarsening of γ′ and γ″ phases can be counterbalanced by the formation of vacancy clusters.
The coarsening behaviors of γ′ and γ″ phases in GH4169 alloy aged at 1023 and 1073 K with electric field treatment (EFT) were investigated by transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). It is demonstrated that precipitation coarsening occurs, and the growth activation energies of γ′ and γ″ phases can be decreased to 115.6 and 198.1 kJ·mol−1, respectively, by applying the electric field. The formation of a large number of vacancies in the matrix is induced by EFT. Due to the occurrence of vacancy migration, the diffusion coefficients of Al and Nb atoms are increased to be 1.6–5.0 times larger than those without EFT at 1023 or 1073 K. Furthermore, the formation of vacancy clusters is promoted by EFT, and the increase in strain energy for the coarsening of γ′ and γ″ phases can be counterbalanced by the formation of vacancy clusters.